Simulation of the process of deformation of heterophase media is necessary for substantiating technological processes of composite forming. Representative volumes of the materials are modeled by a conglomerate of elastic and elastoplastic bodies. Numerical implementations of the models typically use the finite element method (FEM). As a part of the FEM computational procedure, it is necessary to solve a large system of simultaneous linear algebraic equations. When dealing with fine meshes, a Krylov subspace iterative solver is typically used. We present a comparison in terms of convergence of various iterative solvers in a model problem of elastoplastic deformation of a heterophase representative volume. The volume models a metal matrix composite based on the AMg6 aluminum alloy and 10 vol.% of silicone carbide reinforcement. It appears that a relatively rare method, namely QMR, shows the best results.

1.
L.
Mishnaevsky
, Computational Mesomechanics of Composites: Numerical Analysis of the Effect of Microstructures of Composites of Strength and Damage Resistance (
John Wiley and Sons
,
London
,
2007
).
2.
S.
Schmauder
and
L.
Mishnaevsky
,
Micromechanics and Nanosimulation of Metals and Composites: Advanced Methods and Theoretical Concepts
(
Springer
,
Heidelberg
,
2008
).
3.
N. B.
Pugacheva
,
N. S.
Michurov
, and
T. M.
Bykova
,
Diagnostics, Resource and Mechanics of materials and structures
6
,
6
18
(
2015
). Available at: http://dream-journal.org/issues/2015-6/2015-6_56.html
4.
A. A.
Pozdeev
,
P. V.
Trusov
, and
Yu. I.
Nyashin
,
Large Elastoplastic Deformations: Theory, Algorithms and Applications
(
Nauka Publ.
,
Moscow
,
1986
).
5.
T. A.
Driscoll
,
K. C.
Toh
,
L. N.
Trefethen
, et al.,
Matrix Iterations: The Six Gaps Between Potential Theory and Convergence
(
Cornell University Ithaca
,
NY
,
1996
).
6.
N. M.
Nachtigal
,
S. C.
Reddy
, and
L. N.
Trefethen
,
SIAM J. on M. Anal. App.
13
,
778
795
(
1992
).
7.
V. P.
Ilyin
, “
The problems of high-performance technologies of large-scale linear solvers
,” in
Parallelnye Vychinslitelnye Tehnologii
(
2009
).
8.
A. S.
Smirnov
 et al.,
J. Compos. Mater.
52
(
24
),
3351
3363
(
2018
). DOI:.
9.
H. A.
van der Vorst
,
SIAM J. Sci. Stat. Comput.
13
,
631
644
(
1992
).
10.
R.
Li
and
Y.
Saad
,
The Journal of Supercomputing
63
,
443
466
(
2012
).
11.
R. W.
Freund
,
Sci. Stat. Comput.
14
,
470
482
(
1993
).
12.
P.
Sonneveld
,
SIAM J. Sci. Stat. Comput.
10
,
36
52
(
1989
).
This content is only available via PDF.