Furfural is one of the promising precursors obtained from dehydration and hydrolysis of hemicellulose. Condensation reaction of furfural and acetone gives furfurylidene and difurfurylideneacetone in 96% yield by reflux. The conjugated system between C=C and C=O bond in furfurylidene skeleton provide a new challenge for hydrodeoxygenation (HDO) reaction to produce alkane derivatives as alternative liquid fuels. Here we report the continuous flow method compared with batch reaction for HDO reaction of furfurylidene acetone catalyzed by Ni/ZrO2-SiO2. The Ni loading is 10% and 20% by weight of ZrO2-SiO2. The batch reaction was carried out using 10% Ni/ZrO2−SiO2 at 200 °C for 8 h gave alcohol and alkene with 100% conversion. The product was detected as 2-octanol (88.2%) and 6-dodecene (2.9% yield) based on gas chromatography analysis. In comparison, reaction using continuous flow reactor at same temperature using 10% Ni/ZrO2−SiO2 gave 2-((E)-but-2-enyl)furan (9.4%) and 2-butylfuran (4.6%). Here, we subjected that batch reaction leading to ring opening/hydrocracking products gave linear alkene/alcohol. Continuous flow reaction gave furanyl derivatives by hydrocracking reaction.

1.
J.N.
Chheda
,
G.W.
Huber
, and
J.A.
Dumesic
,
Angewandte Chemie International Edition
46
,
7164
(
2007
).
2.
J.
Luo
,
L.
Arroyo-Ramírez
,
J.
Wei
,
H.
Yun
,
C.B.
Murray
, and
R.J.
Gorte
,
Applied Catalysis A: General
508
,
86
(
2015
).
3.
L.
Faba
,
E.
Díaz
,
A.
Vega
, and
S.
Ordóñez
,
Catalysis Today
269
,
132
(
2016
).
4.
Y.
Li
,
X.
Huang
,
Q.
Zhang
,
L.
Chen
,
X.
Zhang
,
T.
Wang
, and
L.
Ma
,
Applied Energy
160
,
990
(
2015
).
5.
S.M.
Ulfa
,
A.
Mahfud
,
S.
Nabilah
, and
M.F.
Rahman
, in
IOP Conference Series: Materials Science and Engineering
(
IOP Publishing
,
2017
), p.
012053
.
6.
S.M.
Ulfa
,
R.F.
Ohorella
, and
C.W.
Astutik
,
Indonesian Journal of Chemistry
18
,
250
(
2018
).
7.
A.
Mahfud
,
E.P.
Utomo
, and
S.M.
Ulfa
,
J. Pure App. Chem. Res
5
,
108
(
2016
).
8.
S.M.
Ulfa
,
I.N.
Pramesti
, and
H.
Mustafidah
,
IOP Conference Series: Materials Science and Engineering
299
,
012069
(
2018
).
9.
S.M.
Ulfa
,
K.A.
Putra
, and
M.F.
Rahman
,
AIP Conference Proceedings, Basic Science
(
2018
).
10.
N.
Rahemi
,
M.
Haghighi
,
A.A.
Babaluo
,
M.F.
Jafari
, and
P.
Estifaee
,
Journal of Industrial and Engineering Chemistry
19
,
1566
(
2013
).
11.
X.
Zhang
,
Q.
Zhang
,
T.
Wang
,
L.
Ma
,
Y.
Yu
, and
L.
Chen
,
Bioresource Technology
134
,
73
(
2013
).
12.
D.
Prihartini
,
S.M.
Ulfa
, and
E.D.
Iftitah
,
Natural
,
3
,
253
(
2016
).
13.
S.M.
Ulfa
,
I.
Sari
,
C.P.
Kusumaningsih
, and
M.F.
Rahman
,
Procedia Chemistry
16
,
616
(
2015
).
14.
Y.
Hidayat
,
I.
Nurcahyo
,
A.
Sofiana
, and
A.D.
Saputro
,
ALCHEMY jurnal penelitian kimia
10
,
10
(n.d.).
15.
J.B.
Condon
,
Surface Area and Porosity Determinations by Physisorption
(
Elsevier
,
2006
).
16.
C.
Gao
,
Y.
Zhao
,
Y.
Zhang
, and
D.
Liu
,
Journal of Sol-Gel Science and Technology
44
,
145
(
2007
).
17.
Z.-G.
Wu
,
Y.-X.
Zhao
, and
D.-S.
Liu
,
Microporous and Mesoporous Materials
68
,
127
(
2004
).
18.
J.G.
Seo
,
M.H.
Youn
, and
I.K.
Song
,
Journal of Power Sources
168
,
251
(
2007
).
19.
S.J.
Han
,
Y.
Bang
,
J.
Yoo
,
K.H.
Kang
,
J.H.
Song
,
J.G.
Seo
, and
I.K.
Song
,
International Journal of Hydrogen Energy
38
,
15119
(
2013
).
20.
L.
Faba
,
E.
Díaz
, and
S.
Ordóñez
,
Applied Catalysis B: Environmental
113–114
,
201
(
2012
).
This content is only available via PDF.