The aim of the current study is to research and analyze a model for multi-objective optimization according to Pareto principle of business interactions between participants in a production cluster. Multi-objective optimization has non-uniform equivalent criteria. Present paper presents theoretical postulates related to finding the most appropriate business interactions in such a cluster - network of Enterprises subcontractors, production clusters, and optimal business interactions.

1.
Velev
Ivan
, Application on mathematical methods in ikonomicata and planned for industrial production,
VII “K. Marks”
,
Sofia
,
1965
. c.
31
32
2.
Dochev
D.
,
Atanasov
B.
, Linear multicriteria problem with uncertainty.
YEAR IU
, №
70
,
1998
, c.
144
165
3.
Yu.K.
Mashunin
, Methods and models of vector optimization,
Moscow
,
Nauka
,
1986
, c.
52
58
4.
Zhukovskii
,
WI
,
Salukkadze
,
ME
,
Methods of decision one clas multicriterial linear task
,
Institute of System Controls AN GSSR
,
1983
. -
1
2
c.
5.
Coello
,
C. A. C.
,
D. A.
Van Veldhuizen
, and
G. B.
Lamont
.
2002
. Evolutionary Algorithms for Solving Multi-Objective Problems, Volume
242
.
Springer
6.
Hu
,
J.
,
Y.
Wang
,
E.
Zhou
,
M. C.
Fu
, and
S. I.
Marcus
.
2012
. “
A Survey of Some Model-Based Methods for Global Optimization
”. In
Optimization, Control, and Applications of Stochastic Systems
,
157
--
179
. Springer
7.
Marler
,
R. T.
, and
J. S.
Arora
.
2010
. “
The Weighted Sum Method for Multi-Objective Optimization: New Insights
”.
Structural and Multidisciplinary Optimization
41
(
6
):
853
862
8.
Parsopoulos
,
K. E.
, and
M. N.
Vrahatis
.
2008
. “
Multi-Objective Particles Swarm Optimization Approaches
”.
Multi-Objective Optimization in Computational Intelligence: Theory and Practice
:
20
42
9.
Zlochin
,
M.
,
M.
Birattari
,
N.
Meuleau
, and
M.
Dorigo
.
2004
. “
Model-Based Search for Combinatorial Optimization: A Critical Survey
”.
Annals of Operations Research
131
(
1-4
):
373
--
395
This content is only available via PDF.