We prove solvability of boundary value problems for forward-backward parabolic equations with a full matrix of gluing conditions. As is known, in the case of forward-backward equations the smoothness of initial and boundary data does not ensure Hölder smoothness of solutions. It is shown that the Hölder classes of solutions to boundary value problem for forward-backward parabolic equations and the number of solvability conditions depend on the matrix of gluing (conjugation) conditions.

1.
S. A.
Tersenov
,
Parabolic Equations with Changing Time Diraction
(
Nauka
,
Novosibirsk
,
1985
).
2.
I. E.
Egorov
,
S. G.
Pyatkov
and
S. V.
Popov
,
Nonclassical Differential-Operator Equations
(
Nauka
,
Novosibirsk
,
2000
).
3.
S. V.
Popov
and
S. V.
Potapova
,
Reports Acad. Scien.
424
(
5
),
594
596
, (
2009
).
4.
S. V.
Popov
Reports Acad. Scien.
400
29
(
2005
).
S. V.
Popov
Reports Acad. Scien.
400
(
1
),
29
3
,1 (
2005
).
5.
S. V.
Popov
and
S. V.
Potapova
,
Math. Zam. YaGU.
17
(
1
),
109
123
, (
2010
)
6.
F D
Gahov
,
Bound. Val. Prob.
(
Nauka
,
Moscow
,
1977
).
7.
N I
Mushelishvili
Sing. Integr. Equat.
(
Nauka
,
Moscow
,
1968
).
8.
V N
Monakhov
Bound. Val. Prob. Free Bound. Elliptic Syst. Equat.
(
Nauka
,
Novosibirsk
,
1977
).
9.
S. V.
Popov
,
Math. Zam. YaGU.
23
(
2
),
90
107
, (
2016
).
This content is only available via PDF.