The article describes the authors’ experience in improving and using design of experiments (DOE) methods for solving various scientific problems in the field of optimal design of turbine profiles, blades, stages, multistage flow parts of turbines and heat circuits. Specific examples of DOE application for planning of computational and full-scale experiments are given. The high efficiency of DOE application is confirmed by experimental studies of two variants of a 2-stage air turbine (prototype and optimal design). Numerical experiments were planned and carried out using 1-D, 2-D and 3-D (CFX) simulations of real processes in individual elements, nodes and multistage axial turbines. The peculiarities of applying DOE methods for creating dependencies that describe the objective functions, functional limitations and various characteristics for turbine profiles, turbine grids, blades, axiradial seals, chamber behind the regulating stage, nozzle with a rotary diaphragm, a thermal circuit, etc. are shown.

1.
A.
Boiko
,
Yu.
Govorushchenko
,
A.
Usaty
, “Optimization of the Axial Turbines Flow Paths”,
Science Publishing Group
,
New York, NY 10018, U.S.A.
,
2016
.
2.
L.A.
Shubenko-Shubin
,
F.A.
Stoyanov
, “Automated design of turbine blades for turbines”,
Mechanical Engineering
,
Liningrad
,
1984
.
3.
Hongde
Jiang
,
Kepeng1
Xu
[at alias], “
A precise full-dimensional design system for multistage steam turbines part I: philosophy and architecture of the system
”,
Proceedings of ASME Turbo Expo
, (
Montreal, Canada
,
2007
), pp.
1209
1218
.
4.
Leonid
Moroz
,
Yuri
Govorushchenko
, [at alias] “Methods and tools for multidisciplinary optimization of axial turbine stages with relatively long blades”
Proceedings of ASME Turbo Expo 2004
, (
Vienna, Austria
,
2004
), pp.
1491
1500
.
5.
C.
Xu
,
R. S.
Amano
, “A turbomachinery blade design and optimization procedure”,
Proceedings of ASME Turbo Expo 2002
, (
Amsterdam
,
The Netherlands
,,
2002
), pp.
927
935
.
6.
P.
Olszewski
,
Genetic optimization of steam multi-turbines system Applied
(
Thermal Engineering, Elsevier
,
2014
), pp.
230
238
.
7.
Xin
Yuan
,
Tadashi
Tanuma
[at alias], “A CFD approach to fluid dynamic optimum design of steam turbine stages with stator and rotor blades”,
Proceedings of ASME Turbo Expo 2010
, (
Glasgow, UK
,
2010
), pp.
2209
2218
.
8.
Ali
Mehmani
, “Uncertainty-Integrated Surrogate Modeling for Complex System Optimization” Ph.D. thesis,
Syracuse University
,
2015
.
9.
Wenbo
Du
, “Multi-Scale Modeling, Surrogate-Based Analysis, and Optimization of Lithium-Ion Batteries for Vehicle Applications” Ph.D. thesis,
University of Michigan
,
2013
.
10.
Sándor
Bilicz
, “Application of Design-of-Experiment Methods and Surrogate Models in Electromagnetic Nondestructive Evaluation” Ph.D. thesis,
Université Paris Sud
,
2011
.
11.
Janis
Jatniek
,
Marco
De Lucia
,
Doris
Dransch
,
Mike
Sipsa
, “Data-driven Surrogate Model Approach for Improving the Performance of Reactive Transport Simulations”
Energy Procedia
, Volume
97
, (
Elsevier
,
2016
), pp.
447
453
.
12.
William
Ogaday
,
Willers
Moore
,
Helena
Mala-Jetmarova
,
Mulualem
Gebreslassie
,
Gavin R.
Tabora
,
Michael R.
Belmont
,
Dragan A.
Savic
, “
Comparison of multiple surrogates for 3D CFD model in tidal farm optimization
”,
Procedia Engineering
154
, (
2016
), pp.
1132
1139
.
13.
J.
Peter
,
M. Marcelet
Onera
Comparison of surrogate models for turbomachinery design
Wseas transactions on fluid mechanics
, Issue
1
, Volume
3
,
2008
, pp.
10
17
.
14.
Y.
Mack
 et al.,
Surrogate Model-Based Optimization Framework: A Case Study in Aerospace Design
,
Studies in Computational Intelligence (SCI)
51
, (
2007
), pp.
323
342
15.
J.
Peter
,
M.
Marcelet
,
S.
Burguburu
,
V.
Pediroda
, “
Comparison of surrogate models for the actual global optimization of a 2D turbomachinery flow
”,
Proceedings of the 7th WSEAS International Conference on Simulation
,
Modelling and Optimization
, (
Beijing, China
, September,
2007
), pp.
46
51
.
16.
E. P.
Box
,
D. W.
Behnken
, Some new three-level Design for the Study of Quantitative Variables (
Technometrics
,
1960
). – vol.
2
, No
4
, pp.
455
475
.
17.
Rechtschaffner
R. L.
, Saturated fractions of 2n and 3n factorial designs, (
Technometrics
,
1967
), No
4
, pp.
569
575
.
18.
DOE Simplified: Practical Tools for Effective Experimentation
,
Mark J.
Anderson
and
Patrick J.
Whitcomb
.
Productivity, Inc
.
Portland, Oregon
,
2000
. Number of pages:
236
. ISBN 1-56327-225-3.
19.
A. P.
Usaty
,
A. V.
Boyko
,
V. S.
Barannik
, “Increase the accuracy of the formal macromodel in the planning of the experiment”
Bulletin of the NTU “KhPI”. Series: Power and heat engineering processes and equipment
, (
NTU “KhPI”
,
Kharkiv
,
2013
), No.
12
(986), pp.
5
9
.
20.
D.
Rogers
,
J.
Adams
, “Mathematical foundations of computer graphics”,
The World
,
Moscow
,
2001
.
21.
N. P.
Korneichuk
,
V. F.
Babenko
,
A. A.
Ligun
, “Extremal properties of polynomials and splines”,
Naukova dumka
,
Kyiv
,
1992
.
22.
A. V.
Boyko
,
S. N.
Kozhevnikov
,
V. A.
Meltukhov
, “Optimization of the form of subsonic profiles of lattices of axial turbines”
News of the USSR Academy of Sciences “Energy and Transport”
, (
AN SSSR. Energy and transport
,
1984
), No
6
, pp.
119
124
.
23.
A. V.
Boyko
,
A. V.
Garkusha
, “Aerodynamics of the flowing part of steam and gas turbines: calculations, research, optimization, design”
Kharkov: KhGPU
,
1999
.
24.
D. M.
Himmelblau
, “Applied Nonlinear Programming”,
The University of Texas
,
Austin, Texas. New York
:
McGraw-Hill Book Company
,
1972
.
25.
I. M.
Sobol
,
R. B.
Statnikov
. Selection of optimal parameters in the multi-criterion problems, (
Nauka
,
Moscow
,
1981
). Print (in Russian).
26.
D.
Karaboga
, “An idea based on honey bee swarm for numerical optimization”,
Technical report - TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
,
2005
.
27.
D. T.
Pham
,
A.
Ghanbarzadeh
,
E.
Koc
,
S.
Otri
,
S.
Rahim
and
M.
Zaidi
, “The Bees Algorithm”,
Technical Note, Manufacturing Engineering Centre, Cardiff University
,
UK
,
2005
.
28.
A. V.
Boiko
,
Y. N.
Govoruschenko
, The fundamentals of the theory of optimal design of axial turbines flow paths, (
Vishcha Shkola
,
Kharkov
,
1989
). Print (in Russian).
29.
A. V.
Boiko
, Optimal design of axial turbine flow path. Kharkov, (
Vishcha Shkola
,
Kharkov
,
1982
). Print (in Russian).
30.
A. V.
Boiko
,
Yu. N.
Govorushchenko
and
A. P.
Usaty
, The creation of an empirical methodology for determining the coefficients of energy losses in turbine cascades by using the theory of planning the experiment (
Miscellany “Power engineering”
, Issue
42
,
Kharkov
,
1986
), pp.
8
14
. Print (in Russian).
31.
A. V.
Boiko
,
Yu. N.
Govorushchenko
,
G. L.
Romanov
and
A. P.
Usaty
, Study on efficiency of axial turbine stages by using the formal macro modeling, (
Thermal Engineering
, No. 6,
1988
), pp.
24
27
. Print (in Russian)
32.
Yu. N.
Govorushchenko
,
G. L.
Romanov
,
E. E.
Skibina
and
A. P.
Usaty
, Assessment of geometrical parameters of turbine cascade using automated designing of flow path, (
Miscellany “Power engineering”
,
Kharkov
,
1990
). Print (in Russian)
33.
Yu. N.
Govorushchenko
,
G. L.
Romanov
,
E. E.
Skibina
and
A. P.
Usaty
, The subsystem of automated design of steam turbine flow path (
Thermal Engineering
,
1989
). Print (in Russian)
This content is only available via PDF.