In this paper, combined cycle (CC) power block parameters are optimized for its application coupled to concentrating solar power (CSP) plant. CSP hybrid plant is based on pressurized air receiver technology using natural gas assisted burner while the CC power block consists on high temperature open air Brayton cycle connected to bottoming steam Rankine cycle. Due to plant layout flexibility introduced by CC arrangements, three preferred configurations will be analyzed and optimized based on the intermediate pressure levels of the bottoming cycle. Benefits and drawbacks of each configuration will be discussed along the paper and the optimum solution will be proposed as the reference power block for electricity production at Integrated Solar Combined Cycle (ISCC) power plants. Results demonstrate that using current solar air receiver technology the system efficiency is far (around 47%) from the one expected from modern commercial CC systems (nearly 60%). The lower power cycle efficiency found was mainly based on pressure restrictions (below 6 bar) imposed by current air receiver designs what also implied lower temperature for the gas turbine.

1.
Guédez
,
R.
,
Spelling
,
J.
,
Laumert
,
B.
&
Fransson
,
T.
Optimization of Thermal Energy Storage Integration Strategies for Peak Power Production by Concentrating Solar Power Plants
.
Energy Procedia
49
,
1642
1651
(
2014
).
2.
Turchi
,
C. S.
Supercritical CO2 for Application in Concentrating Solar Power Systems
.
Proceedings of SCCO2 Power Cycle Symposium 2009
1
5
(
2009
).
3.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
&
Martínez
,
G. S.
Supercritical carbon dioxide cycles for power generation: A review
.
Applied Energy
195
,
152
183
(
2017
).
4.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
&
Wagner
,
M. J.
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
.
Journal of Solar Energy Engineering
135
,
41007
(
2013
).
5.
Reyes-Belmonte
,
M. A.
,
Sebastián
,
A.
,
Romero
,
M.
&
González-Aguilar
,
J.
Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant
.
Energy
112
,
17
27
(
2016
).
6.
Spelling
,
J.
,
Augsburger
,
G.
&
Favrat
,
D.
Evaluation of a Combined Cycle Setup for Solar Tower Power Plants
.
Internal Report
1
68
(
2009
). at <http://infoscience.epfl.ch/record/146770>
7.
Reyes-Belmonte
,
M. A.
,
Sebastián
,
A.
,
González-Aguilar
,
J.
&
Romero
,
M.
Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant
. in
AIP Conference Proceedings
1850
, (
2017
).
8.
Zhu
,
G.
,
Neises
,
T.
,
Turchi
,
C.
&
Bedilion
,
R.
Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant
.
Renewable Energy
74
,
815
824
(
2015
).
9.
Kribus
,
A.
,
Zaibel
,
R.
,
Carey
,
D.
,
Segal
,
A.
&
Karni
,
J.
A solar-driven combined cycle power plant
.
Solar Energy
62
,
121
129
(
1998
).
10.
Behar
,
O.
,
Khellaf
,
A.
,
Mohammedi
,
K.
&
Ait-Kaci
,
S.
A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology
.
Renewable and Sustainable Energy Reviews
39
,
223
250
(
2014
).
11.
Manente
,
G.
High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design
.
Energy Conversion and Management
111
,
186
197
(
2016
).
12.
Kolb
,
G. J.
Economic evaluation of solar-only and hybrid power towers using molten-salt technology
.
Solar Energy
62
,
51
61
(
1998
).
13.
Spelling
,
J.
,
Favrat
,
D.
,
Martin
,
A.
&
Augsburger
,
G.
Thermoeconomic optimization of a combined-cycle solar tower power plant
.
Energy
41
,
113
120
(
2012
).
14.
Stein
,
W. H.
&
Buck
,
R.
Advanced power cycles for concentrated solar power
.
Solar Energy
(
2017
). doi:
15.
Blanco
,
M.
&
Santigosa
,
L. R.
 Advances in concentrating solar thermal research and technology. (
Woodhead Publishing
,
2016
).
16.
Grange
,
B.
 et al 
Thermal Performances of a High Temperature Air Solar Absorber Based on Compact Heat Exchange Technology
.
Journal of Solar Energy Engineering
133
,
31004
(
2011
).
17.
Bellard
,
D.
,
Ferriere
,
A.
,
Pra
,
F.
&
Couturier
,
R.
Experimental characterization of a high-temperature pressurized air solar absorber for the PEGASE project
.
Energy Procedia
49
,
1044
1053
(
2014
).
18.
Manente
,
G.
,
Rech
,
S.
&
Lazzaretto
,
A.
Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems
.
Renewable Energy
96
,
172
189
(
2016
).
19.
Combined Cycle - THERMOFLEX (Thermoflow)
. at <https://www.thermoflow.com/combinedcycle_TFX.html>
20.
Willnow
,
K.
Energy Efficiency Technologies ANNEX III Technical Report for Thermal Power Plants. WEC Knowledge Network
(
2013
).
This content is only available via PDF.