Controlling parabolic trough solar thermal power plants during transient events, such as passing clouds, is challenging for the power plant operators. Solar field controllers try to operate the field with the suitable fluid mass flow to reduce any waste of solar irradiation under very different weather and operational conditions. However, finding the optimal operation trajectory is not possible or guaranteed due to the lack of information about many influencing parameters in the solar field including, for example, effect of spatial variation of irradiance and flow maldistribution in the field. In this paper, the in-house transient simulation tool, the Virtual Solar Field (VSF) is used to test full-sized solar power plants under realistic weather conditions. Automatic field controllers have been developed with the help of our industrial partners to act as reference for further developments in field control. Thus, the VSF can estimate the potential benefit of advanced controllers using, for instance, nowcasting systems provided by cloud cameras, as well as loop control valves to manipulate the flow control in individual loops. It is shown how the VSF can act as a platform to test different control strategies and provide assessments of the detailed performance of the controller with different control components. The implemented automatic field controllers proved to be robust for different irradiance types and, hence, can be used as basis for further analysis. In addition, the controller can be instructed to dump some of the incident solar energy through defocusing in cases when the available solar energy is higher than the energy consumption by the power block and storage. In summary, VSF allows the developers of solar field controllers to test their implementations under different weather conditions and provide accurate assessment without disturbing power plant operation and before investing in new technologies, for instance nowcasting systems.

1.
W. J.
Platzer
,
AIP Conference Proceedings
1734
(
2016
), .
2.
P. H.
Wagner
and
M.
Wittmann
, “Influence of different operation strategies on transient solar thermal power plant simulation models with molten salt as heat transfer fluid,” in
SolarPACES
(
Las Vegas
,
USA
,
2013
).
3.
I.
García
,
J.
Álvarez
, and
D.
Blanco
,
Solar Energy
95
,
2443
2460
(
2011
).
4.
K.
Noureldin
,
L. M.
Gonzlez-Escalada
,
T.
Hirsch
,
B.
Nouri
, and
R.
Pitz-Paal
,
AIP Conference Proceedings
1734
(
2016
), .
5.
K.
Noureldin
,
T.
Hirsch
, and
R.
Pitz-Paal
,
AIP Conference Proceedings
1850
, p.
160019
(
2017
), http://aip.scitation.org/doi/pdf/10.1063/1.4984553.
6.
F.
Burkholder
and
C.
Kutscher
, “Heat loss testing of Schott’s 2008 PTR70 parabolic trough receiver,”
Tech. Rep
. (
NREL
,
2009
).
7.
DOWTHERM A, Heat Transfer Fluid, Dow
(
1997
).
8.
A.
Zavoico
, “Solar power tower design basis document,”
Tech. Rep
. (
Sandia
,
2001
).
9.
K.
Noureldin
,
T.
Hirsch
, and
R.
Pitz-Paal
,
Solar Energy
146
,
131
140
(
2017
).
10.
P.
Schwarzbözl
,
V.
Gross
,
V.
Quaschnig
, and
N.
Ahlbrink
, “
a low-cost dynamic shadow detection system for site evaluation
,” in
17th SolarPACES 2011 Conference
(
2011
).
11.
P.
Kuhn
,
S.
Wilbert
,
D.
Schler
,
C.
Prahl
,
T.
Haase
,
L.
Ramirez
,
L.
Zarzalejo
,
A.
Meyer
,
L.
Vuilleumier
,
P.
Blanc
,
J.
Dubrana
,
A.
Kazantzidis
,
M.
Schroedter-Homscheidt
,
T.
Hirsch
, and
R.
Pitz-Paal
,
AIP Conference Proceedings
1850
, p.
140014
(
2017
), .
12.
H.
Schenk
,
T.
Hirsch
,
M.
Wittmann
,
S.
Wilbert
,
L.
Keller
, and
C.
Prahl
,
Energy Procedia
69
,
2019
2030
(
2015
),
SolarPACES 2014.
13.
T.
Schmidt
,
J.
Kalisch
,
E.
Lorenz
, and
D.
Heinemann
,
Atmospheric Chemistry and Physics
16
,
3399
3412
(
2016
).
14.
S.
Wilbert
,
B.
Nouri
,
P.
Kuhn
,
D.
Schüler
,
C.
Prahl
,
N.
Kozonek
,
R.
Pitz-Paal
,
T.
Schmidt
,
N.
Kilius
,
M.
Schroedter-Homscheidt
, and
Z.
Yasser
, “Wolkenkamera-basierte kürzestfristvorhersage der direktstrahlung,” in
19. Kölner Sonnenkolloquium
(
Cologne
,
Germany
,
2016
).
15.
P.
Kuhn
,
B.
Nouri
,
S.
Wilbert
,
C.
Prahl
,
N.
Kozonek
,
T.
Schmidt
,
Z.
Yasser
,
L.
Ramirez
,
L.
Zarzalejo
,
A.
Meyer
,
L.
Vuilleumier
,
D.
Heinemann
,
P.
Blanc
, and
R.
Pitz-Paal
,
EUPVSEC conference proceedings
(
2017
), accepted for publication.
16.
B.
Nouri
,
P.
Kuhn
,
S.
Wilbert
,
C.
Prahl
,
R.
Pitz-Paal
,
P.
Blanc
,
T.
Schmidt
,
Z.
Yasser
,
L. R.
Santigosa
, and
D.
Heineman
, “
Nowcasting of DNI maps for the solar field based on voxel carving and individual 3d cloud objects from all sky images
,” (
2017
).
17.
D.
Oberländer
,
C.
Prahl
,
S.
Wilbert
,
S.
Müller
,
B.
Stanicki
, and
N.
Hanrieder
, “
Cloud shadow maps from whole sky imagers and voxel carving
,” in
ICEM 2015
(
2015
).
18.
P.
Kuhn
,
S.
Wilbert
,
C.
Prahl
,
D.
Schler
,
T.
Haase
,
T.
Hirsch
,
M.
Wittmann
,
R.
Pitz-Paal
,
P.
Blanc
,
L.
Ramirez
,
L.
Zarzalejo
,
A.
Meyer
, and
L.
Vuilleumier
,
Solar Energy
(
2017
), accepted for publication.
19.
P.
Kuhn
,
S.
Wilbert
,
C.
Prahl
,
A.
Kazantzidis
,
L.
Ramirez
,
L.
Zarzalejo
,
L.
Vuilleumier
,
P.
Blanc
, and
R.
Pitz-Paal
, “
Validation of nowcasted spatial DNI maps
,” in
DNICast Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies
(
2017
).
20.
E.
Camacho
,
F.
Rubio
,
M.
Berenguel
, and
L.
Valenzuela
,
Solar Energy
81
,
1240
1251
(
2007
).
21.
22.
L. A.
Barcia
,
R. Peón
Menéndez
,
J. A.
Martínez
Esteban
,
M. A.
José Prieto
,
J. A. Martín
Ramos
,
F. J.
de Cos Juez
, and
A. Nevado
Reviriego
,
Energies
8
,
13361
13377
(
2015
).
23.
F.
Shinskey
,
Process Control Systems: Application, Design, and Tuning
,
Chemical engineering books
(
McGraw-Hill
,
1996
).
24.
S.
Dieckmann
,
DLR - Institut of Solar Research - greenius - The green energy system analysis tool
,
2017
.
25.
Nrel.gov
,
Concentrating solar power projects
,
La Africana
,
2012
.
This content is only available via PDF.