Three Cr ferritic/martensitic containing-steels (P91, VM12 and MarBN) and one carbon steel (A516) were exposed to a mixture of molten nitrates salt (Solar Salt) at 580°C. P91 and MarBN were also exposed to a newly developed ternary carbonate eutectic salt mixture at 650°C under static conditions. In contact with molten nitrates, the uncoated substrates developed a complex, fast growing multilayered oxide scale, which includes NaFeO2. Significant spallation took place for all substrates. However, A516 exhibited lower corrosion rates and developed a more compact Fe2O3/Fe3O4 slower growing scale. Substrate nitriding occurred on the ferritic steels. On molten carbonates at 650°C the uncoated steels also corroded heavily and the formed oxide contained LiFeO2. Cr was found in the salts exposed to the Cr containing uncoated steels, which likely implies chromate dissolution in the melts as a result of a basic fluxing mechanism, typical of molten salt corrosion. Al slurry coated samples were also tested by immersion in both salts. All the tested coated samples performed well as no evidence of significant weight variation or substrate attack could be observed. The protective nature of these coatings may be attributed to the formation of NaAlO2. Some coating-substrate interdiffusion occurred, to a higher extent on aluminized A516. The Al richest phases (FeAl3, Fe2Al5) transformed into the lower Al containing phase FeAl.

1.
F.
Pettit
,
Oxid. Met.
76
,
1
21
(
2011
).
2.
M.
Spiegel
and
J.
Mentz
,
Mater. Corros.
65
,
276
281
(
2014
).
3.
S.H.
Goods
and
R.W.
Bradshaw
,
J. Mater. Eng. Perform.
13
(
1
),
78
87
(
2004
).
4.
A.G.
Fernandez
,
A.
Rey
,
I.
Lasanta
,
S.
Mato
,
M.P.
Brady
and
F.J.
Perez
,
Mater. Corros.
65
,
267
275
(
2014
).
5.
R.W.
Bradshaw
and
S.H.
Goods
,
Corrosion Resistance of Stainless Steels During Thermal Cycling in Alkali Nitrate Molten Salts
,
Sandia National Laboratories Report, SAND2001-8518
,
2001
.
6.
A. Soleimani
Dorcheh
and
M.C.
Galetz
,
Sol. Energ. Mat. Sol. Cells
146
,
8
15
(
2016
).
7.
J.W.
Slusser
,
J.B.
Titcomb
,
M.T.
Heffelfinger
, and
B.R.
Dunbobbin
,
JOM
,
24
27
(
1985
).
8.
P.
Audigié
,
N.
Bizien
,
I.
Baráibar
,
S.
Rodriguez
,
A.
Pastor
,
M.
Hernandez
and
A.
Agüero
, “
Aluminide slurry coatings for protection of ferritic steel in molten nitrate corrosion for concentrated solar power technology
”,
AIP Conference Proceedings
1850
, (
1
),
070002
(
2017
).
9.
A.
Agüero
,
M.C.
Garcia
,
R.
Muelas
,
A.
Sanchez
,
F.J.
Pérez
,
D.
Duday
,
M.P.
Hierro
and
C.
Gomez
,
Mater. Sci. Forum
,
369-372
,
759
766
(
2001
).
10.
A.
Agüero
,
M.
Gutiérrez
,
L.
Korcakova
,
T.T.M.
Nguyen
,
B.
Hinnemann
and
S.
Saadi
,
Oxid. Met.
76
(
1-2
),
23
42
(
2011
).
11.
A.
Agüero
,
I.
Baráibar
,
V.
Gonzalez
,
R.
Muelas
and
D.
Plana
,
Oxid. Met.
85
(
3-4
),
263
281
(
2016
).
12.
A.
Agüero
,
M.
Gutiérrez
,
R.
Muelas
and
K.
Spiradek-Hahn
,
Surf. Eng.
,
1
10
(
2016
).
13.
Vallourec solution: VALIOR™ P91 and P92 pipe with inside surface protection
: http://www.vallourec.com/fossilpower/EN/Products/Pages/valior.aspx
14.
J.
Gabrel
,
W.
Bendick
,
J.C.
Vaillant
,
B.
Vandenberghe
and
B.
Lefebvre
, “
Advances in Materials Technology for Fossil Power Plants
”,
Proceedings of the Fourth International Conference
2004
,
919
929
(2005).
15.
F.
Abe
,
M.
Tabuchi
,
H.
Semba
,
M.
Igarashi
,
M.
Yoshizawa
,
N.
Komai
and
A.
Fujita
, “
Feasibility of MARBN steel for application to thick section boiler components in USC power plant at 650°C
”, in
5th EPRI Int. Conf
.
2007
.
Marco Island
,
FL, USA
(2007).
16.
K.G.
Abstoss
,
A.
Nitsche
,
P.
Mayr
,
C.
Schlacher
,
V.
Gonzalez
and
A.
Agüero
, “
Experience with 9Cr3W3CoVNbBN Steel in Terms of Welding, Creep and Oxidation
”, in
Proceedings of the 8th International Conference on Advances in Materials Technology for Fossil Power Plants
,
Algarve, Portugal
(
2016
).
17.
F.J.
Ruiz-Cabañas
,
C.
Prieto
,
R.
Osuna
,
V.
Madina
,
A.I.
Fernandez
and
L.F.
Cabeza
,
Sol. Energ. Mat. Sol. Cells
157
,
383
392
(
2016
).
18.
G.
Garcia-Martin
,
M.I.
Lasanta
,
V.
Encinas-Sanchez
,
M.T.
de Miguel
and
F.J.
Pérez
,
Sol. Energ. Mat. Sol. Cells
161
,
226
231
(
2017
).
19.
X.
Wei
,
M.
Song
,
Q.
Peng
,
J.
Ding
and
J.
Yang
,
Energy Procedia
61
,
1314
1317
(
2014
).
20.
Q.
Peng
,
J.
Ding
,
W.
Xiaolan
,
Y.
Jianping
and
Y.
Xiaoxi
,
Appl. Energy
87
,
2812
2817
(
2010
).
21.
R.
Serrano-Lopez
,
J.
Fradera
, and
S.
Cuesta-Lopez
,
Chem. Eng. Process.
73
: p.
87
102
.
22.
Q.
Peng
,
X.
Yang
,
J.
Ding
,
X.
Wei
, and
J.
Yang
,
Appl. Energy
112
,
682
689
(
2013
).
23.
C.Y.
Zhao
and
Z.G.
Wu
,
Sol. Energ. Mat. Sol. Cells
95
,
3341
3346
(
2011
).
24.
N.
Ren
,
Y.
Wu
,
T.
Wang
and
C.
Ma
,
J. Therm. Anal. Calorim.
104
,
1201
1208
(
2011
).
25.
R.
Olivares
,
C.
Chen
, and
S.
Wright
,
J. Sol. Energ. Eng.
134
,
041002
1
-041002-8 (
2012
).
26.
M.T.
De Miguel
,
V.
Encinas-Sanchez
,
M.I.
Lasanta
,
G.
Garcia-Martin
and
F.J.
Pérez
,
Sol. Energ. Mat. Sol. Cells
157
,
966
972
(
2016
).
27.
V.
Lepingle
,
G.
Louis
,
D.
Petelot
,
B.
Lefebvre
and
B.
Vandenberghe
,
Mater. Forum
461-464
,
1039
1046
(
2004
).
28.
W.J.
Quadakkers
and
P.J.
Ennis
,
Materials for Advanced Power Engineering
1
,
123
130
(
1998
).
29.
A.
Garche
,
Encyclopedia of Electrochemical Power Sources
2
,
264
(
2009
).
30.
A.
Rapp
,
Corr. Sci.
44
,
209
221
(
2002
).
33.
N.
Hiramatsu
,
Y.
Uematsu
,
T.
Tanaka
and
M.
Kinugasa
,
Mater. Sci. Eng
A120
,
319
328
(
1989
).
34.
A.
Agüero
,
M.
Gutiérrez
,
R.
Muelas
,
D.
Plana
,
A.
Román
and
M.
Hernández
,
Mater. Corr.
65
,
149
160
(
2014
).
This content is only available via PDF.