This paper summarizes the collaborative work done by CENER, Fraunhofer ISE and CRS4 within the scope of the STAGE-STE project related to heliostat field generation algorithms and their application to small heliostats (<10 m2). Radially staggered heliostat field layouts have been commonly applied to real solar fields with known results. However, their use in conjunction with small heliostats or the use of brand new ways for heliostat allocation, such natural pattern based algorithms, is still unknown. Herein, the most promising heliostat field generation algorithms are studied and compared, in annual optical efficiency terms, for different scenarios. These efficiencies correspond to the best heliostat layouts found by the optimization process that each generation algorithm can create, for three scenarios. Results show that the fields from the selected algorithms lead to similar optical efficiencies. The slight differences are not enough evidence to nominate one of the algorithms as the best choice, taking into account the inherent error of the simulation tools, the optimization process and further requirements needed in commercial applications (e.g. access paths) not coped in this study.

1.
K. R.
Bhargav
,
F.
Gross
, and
P.
Schramek
, “
Life Cycle cost optimized heliostat size for power towers
Energy Procedia
49
(
2014
),
40
49
.
2.
A.
Pfahl
,
J.
Coventry
,
M.
Röger
,
F.
Wolfertstetter
,
J. F.
Vásquez-Arango
,
F.
Gross
&
P.
Liedke
. (
2017
). “
Progress in heliostat development
”,
Solar Energy
,
152
(
2017
),
3
37
.
3.
M.
Zhang
,
L.
Yang
,
C.
Du
and
X.
Xu
, “
An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout
”,
Renewable Energy
87
(
2016
),
720
730
.
4.
A.
Mutuberria
,
J.
Pascual
,
M. V.
Guisado
and
F.
Mallor
, “
Comparison of heliostat field layout design methodologies and impact on power plant efficiency
”,
Energy Procedia
69
(
2015
),
1360
1370
.
6.
F. W.
Lipps
and
L. L.
Vant-Hull
, “
A cellwise method for the optimization of large central receiver systems
”,
Solar Energy
20
.
6
(
1978
),
>505
516
.
7.
M.
Romero
,
M. J.
Marcos
,
R.
Osuna
and
V.
Fernández
, “
Design and implementation plan of a 10 MW solar tower power plant based on volumetric-air technology in Seville (Spain)
”,
Solar Engineering
(
2000
),
89
98
.
8.
J. I.
Burgaleta
,
S.
Arias
and
D.
Ramirez
. “Gemasolar, the first tower thermosolar commercial plant with molten salt storage”.
SolarPACES
,
Granada, Spain
,
20
23
.
9.
C. J.
Noone
,
M.
Torrilhon
and
A.
Mitsos
, “
Heliostat field optimization: A new computationally efficient model and biomimetic layout
”,
Solar Energy
86
.
2
(
2012
),
792
803
.
10.
M.
Sanchez
and
M.
Romero
, “
Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces
”,
Solar Energy
80
.
7
(
2006
),
861
874
.
11.
E.
Carrizosa
,
C.
Domínguez-Bravo
,
E.
Fernández-Cara
and
M.
Quero
, “
A global optimization approach to the design of solar power plants
”,
Tech. rep., Institute of Mathematics of University of Seville (IMUS)
(
2014
).
12.
S. L.
Lutchman
,
A. A.
Groenwold
,
P.
Gauché
and
S.
Bode
, “
On using a gradient-based method for heliostat field layout optimization
”,
Energy Procedia
49
(
2014
),
1429
1438
.
13.
P.
Richter
,
M.
Frank
, and
E.
Abrahám
, “
Multi-objective optimization of solar tower heliostat fields
”,
ECMI 2014 28 Mini-Symposium on Spacetime.
14.
B. L.
Kistler
, “
A user’s manual for DELSOL3: a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants
”,
Sandia National Laboratories, Sandia Report No. SAND86-8018
(
1986
).
15.
F. M. F.
Siala
and
M. E.
Elayeb
, “
Mathematical formulation of a graphical method for a no-blocking heliostat field layout
”,
Renewable energy
23
.
1
(
2001
):
77
92
.
16.
J.
Remund
, “
Meteonorm handbook part I: software
”,
Version 7
(
2014
):
1
55
.
17.
P. L.
Leary
and
J. D.
Hankins
, “User’s guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants”,
No. SAND-77-8280
.
Sandia Labs., Livermore, CA (USA
),
1979
.
18.
J.
Ballestrín
and
M.
Aitor
, “
Solar radiation attenuation in solar tower plants
”,
Solar Energy
86
.
1
(
2012
),
388
392
.
19.
P.
Schwarzbözl
,
R.
Pitz-Paal
and
M.
Schmitz
, “
Visual HFLCAL-A software tool for layout and optimisation of heliostat fields
”,
Proceedings.
2009
.
20.
A.
Mutuberria
,
A.
Monreal
,
A.
Albert
and
M.
Blanco
, “
Results of the empirical validation of Tonatiuh at Mini-Pegase CNRS-PROMES facility
”,
Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy
.
2011
.
21.
E.
Leonardi
and
B.
D’Aguanno
, “
CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system
”,
Energy
36
(
2011
)
4828
4837
.
22.
R.
Branke
and
A.
Heimsath
, “
Raytrace3D power tower—A novel optical model for central receiver systems
”,
Proceedings of SolarPACES
(
2010
):
21
24
This content is only available via PDF.