Inclement weather effects have a direct impact on the efficiency of a Solar Power Tower plant and have the potential to damage the receiver by flash heating. An optimised aiming strategy for the heliostat field mitigates the risk of receiver damage and maximises plant efficiency. A stochastic integer programming approach is applied to optimise the aiming strategy of the heliostat field, with uncertainty in the cloud location, size and density. The optimisation technique is demonstrated with a test case and results are presented for near real-time simulation of the optimal aiming strategy.

1.
J.
Barberena
,
A. M.
Larrayoz
,
M.
Sánchez
, and
A.
Bernardos
,
State-of-the-art of Heliostat Field Layout Algorithms and their Comparison
.
Energy Procedia
, vol.
93
, no. March, pp.
31
38
,
2016
.
2.
S. M.
Besarati
and
D. Yogi
Goswami
,
A computationally efficient method for the design of the heliostat field for solar power tower plant
.
Renewable Energy
, vol.
69
, no. November
2016
, pp.
226
232
, 2014.
3.
A.
Śanchez-González
and
D.
Santana
,
Solar flux distribution on central receivers: A projection method from analytic function
.
Renewable Energy
, vol.
74
, pp.
576
587
,
2015
.
4.
K.
Wang
,
Y. L.
He
,
Y.
Qiu
, and
Y.
Zhang
,
A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver
,
Renewable Energy
, vol.
89
, pp.
93
107
,
2016
.
5.
E.
Carrizosa
,
C.
Domínguez-Bravo
,
E.
Fernández-Cara
, and
M.
Quero
.
A heuristic method for simultaneous tower and pattern-free field optimization on solar power systems
.
Computers & Operations Research
, vol.
57
, pp.
109
122
,
2015
.
6.
M.
Lopez-Martinez
and
F.
Rubio
.
Cloud detection system for a solar power tower plant. IEEE 2002 28th Annual Conference of the Industrial Electronics Society
.
IECON 02
, vol.
3
, pp.
2560
2565
,
2002
.
7.
S.
Relloso
and
E.
García
.
Tower Technology Cost Reduction Approach after Gemasolar Experience
.
Energy Procedia
, vol.
69
, pp.
1660
1666
,
2015
.
8.
A.
Salomé
,
F.
Chhel
,
G.
Flamant
,
A.
Ferriére
, and
F.
Thiery
.
Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower
.
Solar Energy
, vol.
94
, pp.
352
366
,
2013
.
9.
A.
Sánchez-González
,
M. R.
Rodríguez-Sánchez
, and
D.
Santana
.
Aiming strategy model based on allowable flux densities for molten salt central receivers
.
Solar Energy
,
2015
.
10.
Q.
Yu
,
Z.
Wang
, and
E.
Xu
.
Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field
.
Applied Energy
, vol.
136
, pp.
417
430
,
2014
.
11.
T.
Fend
,
B.
Hoffschmidt
,
R.
Pitz-Paal
,
O.
Reutter
, and
P.
Rietbrock
.
tPorous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties
.
Energy
, vol.
29
, no.
5-6
, pp.
823
833
,
2004
.
12.
M.
Astol
,
M.
Binotti
,
S.
Mazzola
,
L.
Zanellato
, and
G.
Manzolini
,
Heliostat aiming point optimization for external tower receiver
.
Solar Energy
, pp.
1
16
,
2016
.
13.
B.
Belhomme
,
R.
Pitz-Paal
, and
P.
Schwarzbözl
.
Optimization of Heliostat Aim Point Selection for Central Receiver Systems Based on the Ant Colony Optimization Metaheuristic
.
Journal of Solar Energy Engineering
, vol.
136
, no. February 2014, p.
011005
,
2013
.
14.
M.
Berenguel
,
F. R.
Rubio
,
A.
Valverde
,
P. J.
Lara
,
M. R.
Arahal
,
E. F.
Camacho
, and
M.
López
.
An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant
.
Solar Energy
, vol.
76
, no.
5
, pp.
563
575
,
2004
.
15.
A.
Kribus
,
I.
Vishnevetsky
,
A.
Yogev
, and
T.
Rubinov
.
Closed loop control of heliostats
.
Energy
, vol.
29
, no.
5-6
, pp.
905
913
,
2004
.
16.
T.
Ashley
,
E.
Carrizosa
, and
E.
Fernández-Cara
.
Optimisation of aiming strategies in Solar Power Tower plants
.
Energy
,
2017
.
17.
N. C.
Cruz
,
J. L.
Redondo
,
J. D.
Álvarez
,
M.
Berenguel
, and
P. M.
Ortigosa
.
A parallel TeachingLearning-Based Optimization procedure for automatic heliostat aiming
.
The Journal of Supercomputing
,
2016
.
18.
R.
Baños
,
F.
Manzano-Agugliaro
,
F. G.
Montoya
,
C.
Gil
,
A.
Alcayde
, and
J.
Gómez
.
Optimization methods applied to renewable and sustainable energy: A review
:
Renewable and Sustainable Energy Reviews
, vol.
15
, no.
4
, pp.
1753
1766
,
2011
.
19.
M.
Martínez-Chico
,
F. J.
Batlles
, and
J. L.
Bosch
.
Cloud classification in a Mediterranean location using radiation data and sky images
.
Energy
, vol.
36
, no.
7
, pp.
4055
4062
,
2011
.
20.
H.
Breitkreuz
,
M.
Schroedter-Homscheidt
, and
T.
Holzer-Popp
.
A case study to prepare for the utilization of aerosol forecasts in solar energy industries
.
Solar Energy
, vol.
81
, no.
11
, pp.
1377
1385
,
2007
.
21.
B.
Dürr
.
Automatic cloud amount detection by surface longwave downward radiation measurements
.
Journal of Geophysical Research
, vol.
109
, no.
D5
, p.
D05201
,
2004
.
22.
G.
Augsburger
and
D.
Favrat
,
Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant
.
Solar Energy
, vol.
87
, no.
1
, pp.
42
52
,
2013
.
23.
R.
Tapakis
and
A. G.
Charalambides
.
Equipment and methodologies for cloud detection and classification: A review
.
Solar Energy
, vol.
95
, pp.
392
430
,
2013
.
24.
F. J.
Collado
,
A.
Gómez
, and
J. A.
Turégano
,
An analytic function for the flux density due to sunlight reflected from a heliostat
.
Solar Energy
, vol.
37
, no.
3
, pp.
215
234
,
1986
.
25.
F. J.
Collado
.
Quick evaluation of the annual heliostat field efficiency
.
Solar Energy
, vol.
82
, no.
4
, pp.
379
384
,
2008
.
This content is only available via PDF.