Inclement weather effects have a direct impact on the efficiency of a Solar Power Tower plant and have the potential to damage the receiver by flash heating. An optimised aiming strategy for the heliostat field mitigates the risk of receiver damage and maximises plant efficiency. A stochastic integer programming approach is applied to optimise the aiming strategy of the heliostat field, with uncertainty in the cloud location, size and density. The optimisation technique is demonstrated with a test case and results are presented for near real-time simulation of the optimal aiming strategy.
REFERENCES
1.
J.
Barberena
, A. M.
Larrayoz
, M.
Sánchez
, and A.
Bernardos
, State-of-the-art of Heliostat Field Layout Algorithms and their Comparison
. Energy Procedia
, vol. 93
, no. March, pp. 31
–38
, 2016
.2.
S. M.
Besarati
and D. Yogi
Goswami
, A computationally efficient method for the design of the heliostat field for solar power tower plant
. Renewable Energy
, vol. 69
, no. November 2016
, pp. 226
–232
, 2014.3.
A.
Śanchez-González
and D.
Santana
, Solar flux distribution on central receivers: A projection method from analytic function
. Renewable Energy
, vol. 74
, pp. 576
–587
, 2015
.4.
K.
Wang
, Y. L.
He
, Y.
Qiu
, and Y.
Zhang
, A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver
, Renewable Energy
, vol. 89
, pp. 93
–107
, 2016
.5.
E.
Carrizosa
, C.
Domínguez-Bravo
, E.
Fernández-Cara
, and M.
Quero
. A heuristic method for simultaneous tower and pattern-free field optimization on solar power systems
. Computers & Operations Research
, vol. 57
, pp. 109
–122
, 2015
.6.
M.
Lopez-Martinez
and F.
Rubio
. Cloud detection system for a solar power tower plant. IEEE 2002 28th Annual Conference of the Industrial Electronics Society
. IECON 02
, vol. 3
, pp. 2560
–2565
, 2002
.7.
S.
Relloso
and E.
García
. Tower Technology Cost Reduction Approach after Gemasolar Experience
. Energy Procedia
, vol. 69
, pp. 1660
–1666
, 2015
.8.
A.
Salomé
, F.
Chhel
, G.
Flamant
, A.
Ferriére
, and F.
Thiery
. Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower
. Solar Energy
, vol. 94
, pp. 352
–366
, 2013
.9.
A.
Sánchez-González
, M. R.
Rodríguez-Sánchez
, and D.
Santana
. Aiming strategy model based on allowable flux densities for molten salt central receivers
. Solar Energy
, 2015
.10.
Q.
Yu
, Z.
Wang
, and E.
Xu
. Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field
. Applied Energy
, vol. 136
, pp. 417
–430
, 2014
.11.
T.
Fend
, B.
Hoffschmidt
, R.
Pitz-Paal
, O.
Reutter
, and P.
Rietbrock
. tPorous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties
. Energy
, vol. 29
, no. 5-6
, pp. 823
–833
, 2004
.12.
M.
Astol
, M.
Binotti
, S.
Mazzola
, L.
Zanellato
, and G.
Manzolini
, Heliostat aiming point optimization for external tower receiver
. Solar Energy
, pp. 1
–16
, 2016
.13.
B.
Belhomme
, R.
Pitz-Paal
, and P.
Schwarzbözl
. Optimization of Heliostat Aim Point Selection for Central Receiver Systems Based on the Ant Colony Optimization Metaheuristic
. Journal of Solar Energy Engineering
, vol. 136
, no. February 2014, p. 011005
, 2013
.14.
M.
Berenguel
, F. R.
Rubio
, A.
Valverde
, P. J.
Lara
, M. R.
Arahal
, E. F.
Camacho
, and M.
López
. An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant
. Solar Energy
, vol. 76
, no. 5
, pp. 563
–575
, 2004
.15.
A.
Kribus
, I.
Vishnevetsky
, A.
Yogev
, and T.
Rubinov
. Closed loop control of heliostats
. Energy
, vol. 29
, no. 5-6
, pp. 905
–913
, 2004
.16.
T.
Ashley
, E.
Carrizosa
, and E.
Fernández-Cara
. Optimisation of aiming strategies in Solar Power Tower plants
. Energy
, 2017
.17.
N. C.
Cruz
, J. L.
Redondo
, J. D.
Álvarez
, M.
Berenguel
, and P. M.
Ortigosa
. A parallel TeachingLearning-Based Optimization procedure for automatic heliostat aiming
. The Journal of Supercomputing
, 2016
.18.
R.
Baños
, F.
Manzano-Agugliaro
, F. G.
Montoya
, C.
Gil
, A.
Alcayde
, and J.
Gómez
. Optimization methods applied to renewable and sustainable energy: A review
: Renewable and Sustainable Energy Reviews
, vol. 15
, no. 4
, pp. 1753
–1766
, 2011
.19.
M.
Martínez-Chico
, F. J.
Batlles
, and J. L.
Bosch
. Cloud classification in a Mediterranean location using radiation data and sky images
. Energy
, vol. 36
, no. 7
, pp. 4055
–4062
, 2011
.20.
H.
Breitkreuz
, M.
Schroedter-Homscheidt
, and T.
Holzer-Popp
. A case study to prepare for the utilization of aerosol forecasts in solar energy industries
. Solar Energy
, vol. 81
, no.11
, pp. 1377
–1385
, 2007
.21.
B.
Dürr
. Automatic cloud amount detection by surface longwave downward radiation measurements
. Journal of Geophysical Research
, vol. 109
, no. D5
, p. D05201
, 2004
.22.
G.
Augsburger
and D.
Favrat
, Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant
. Solar Energy
, vol. 87
, no. 1
, pp. 42
–52
, 2013
.23.
R.
Tapakis
and A. G.
Charalambides
. Equipment and methodologies for cloud detection and classification: A review
. Solar Energy
, vol. 95
, pp. 392
–430
, 2013
.24.
F. J.
Collado
, A.
Gómez
, and J. A.
Turégano
, An analytic function for the flux density due to sunlight reflected from a heliostat
. Solar Energy
, vol. 37
, no. 3
, pp. 215
–234
, 1986
.25.
F. J.
Collado
. Quick evaluation of the annual heliostat field efficiency
. Solar Energy
, vol. 82
, no. 4
, pp. 379
–384
, 2008
.26.
Abengoa PS10 SPT Plant
. http://www.abengoasolar.com/web/en/plantassolares-/plantaspara terceros/espana/index.html [Date Accessed: 22/02/2017].
This content is only available via PDF.
© 2018 Author(s).
2018
Author(s)