Two-dimensional liquid convection problem is implemented using parallel computations based on CUDA technology. The Jacobi method and the conjugate gradient method are used to solve the systems of linear equations (SLE) with sparse matrices, obtained by the initial equations approximation. The calculation time on the central processor of the PC is compared with the time when using GPUs, the calculations acceleration with the unknowns number increase is estimated.

1.
L. Ziane
Khodja
,
R.
Couturier
,
A.
Giersch
, et al.,
J. Supercomput.
69
,
200
(
2014
).
2.
A. N.
Cherepanov
and
V. N.
Popov
,
Thermophysics and Aeromechanics
21
,
355
(
2014
).
3.
E. P.
Magdenko
,
J. of App. Mech. and Tech. Phys.
57
(
1
),
13
19
(
2016
).
4.
V.
Volkov
,
J. W.
Demmel
,
SC’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing
,
Austin, TX, USA
,
2008
, (
IEEE Press Piscataway
,
NJ, USA
2008
), pp.
1
11
.
5.
N.
Bell
and
M.
Garland
,
NVIDIA Technical Report NVR-2008-004
(
2008
).
6.
Yu. S.
Tsivinskaya
,
M. Yu.
Tsivinskiy
, and
V. N.
Popov
,
Vestnik nizhegorodskogo universiteta im. N.I. Lobachevskogo
3
,
150
155
(
2014
). Russian.
7.
D. A.
Gubaydullin
,
A. I.
Nikiforov
, and
R. V.
Sadovnikov
,
Vestnik nizhegorodskogo universiteta im. N.I. Lobachevskogo
1
,
205
212
(
2011
). Russian.
8.
E. N.
Zhuravleva
,
J. of App. Mech. and Tech. Phys.
57
(
3
),
396
401
(
2016
).
9.
A. J.
Chorin
,
J. Comput. Phys.
2
,
12
26
(
1967
).
This content is only available via PDF.