This paper addresses a new version of the least squares collocation (LSC) method of high order accuracy proposed and implemented for the numerical solution of the nonhomogeneous biharmonic equation. The differential problem is projected onto a polynomial space of the fourth and eighth degrees by the LSC method. The algorithm implemented is applied in irregular domains. The boundaries of these domains are given by analytical curves, in particular, by splines. The irregular domain is embedded in a rectangle covered by a regular grid with rectangular cells. In this paper we use the irregular cells (i-cells) which are cut off by the domain boundary from the rectangular cells of the initial regular grid. The idea of attaching elongated i-cells to the neighboring ones is used. A separate piece of the analytical solution is constructed in the combined cells. The collocation and matching points located outside the domain are used to approximate the differential equations in the boundary cells. These two approaches allow us to reduce essentially the conditionality of the corresponding system of linear algebraic equations. It is shown that the approximate solutions obtained by the LSC method converge with an increased order and coincide with the analytical solutions of the test problems with high accuracy in the case of the known solution. The numerical results are compared with those found by other authors who used a high order finite difference method (FDM). The nonhomogeneous biharmonic equation is used to model the stress-strain state (SSS) of isotropic thin irregular plates as an application.

1.
L. W.
Ehrlich
and
M. M.
Gupta
,
SIAM J. Numer. Anal.
12
,
773
790
(
1975
).
2.
A.
Mayo
,
SIAM J. Numer. Anal.
21
,
265
299
(
1984
).
3.
J. W.
Stephenson
,
Comput. Phys.
55
,
65
80
(
1984
).
4.
J.
Shen
,
SIAM J. Sci. Comput.
16
,
74
87
(
1995
).
5.
I.
Altas
,
J.
Dym
,
M. M.
Gupta
, and
R. P.
Manohar
,
SIAM J. Sci. Comput.
19
,
1575
1585
(
1998
).
6.
M. C.
Lai
and
H. C.
Liu
,
Applied Mathematics and Computation
164
,
679
695
(
2005
).
7.
G.
Chen
,
Z.
Li
, and
P.
Lin
,
Advances in Computational Mathematics
29
,
113
133
(
2007
).
8.
M.
Ben-Artzi
,
J. P.
Croisille
, and
D.
Fishelov
,
SIAM J. Sci. Comput.
31
,
303
333
(
2008
).
9.
M.
Ben-Artzi
,
I.
Chorev
,
J. P.
Croisille
, and
D.
Fishelov
,
SIAM J. Numer. Anal.
47
,
3087
3108
(
2009
).
10.
S. C.
Brenner
,
SIAM J. Numer. Anal.
26
,
1124
1138
(
1989
).
11.
A.
Mayo
and
A.
Greenbaum
,
SIAM J. Sci. Comput.
13
,
101
118
(
1992
).
12.
M. R.
Hanisch
,
SIAM J. Numer. Anal.
30
,
184
214
(
1992
).
13.
C.
Davini
and
I.
Pitacco
,
SIAM J. Numer. Anal.
38
,
820
836
(
2000
).
14.
Y.
Jiang
,
B.
Wang
, and
X.
Yueshebg
,
SIAM J. Numer. Anal.
52
,
2530
2554
(
2000
).
15.
M. C.
Lai
and
J. M.
Tseng
,
Journal of Computational and Applied Mathematics
201
,
175
181
(
2007
).
16.
V. P.
Shapeev
and
E. V.
Vorozhtsov
,
Journal of Multidisciplinary Engineering Science and Technology
9
,
2553
2562
(
2015
).
17.
V. P.
Shapeev
and
V. A.
Belyaev
,
Numerical methods and programming[in Russian]
19
,
96
111
(
2018
).
18.
V.
Belyaev
and
V.
Shapeev
,
Computational Technologies
[in Russian]
5
,
12
21
(
2000
).
19.
V.
Shapeev
and
V.
Belyaev
,
Computational Technologies
[in Russian]
21
,
95
110
(
2016
).
20.
V.
Belyaev
and
V.
Shapeev
,
Computational Technologies
[in Russian]
22
,
22
42
(
2017
).
21.
V.
Belyaev
and
V.
Shapeev
,
Modeling and Analysis of Information Systems
[in Russian]
24
,
629
648
(
2017
).
22.
V.
Belyaev
and
V.
Shapeev
,
AIP Conference Proceedings
1893
,
030102–p.1
030102–p.14
(
2017
).
23.
V. P.
Shapeev
,
V. A.
Belyaev
,
S. K.
Golushko
, and
S. V.
Idimeshev
,
EPJ Web of Conferences
173
,
01012
p
.1–01012–p.8 (
2018
).
24.
V. A.
Belyaev
and
V. P.
Shapeev
,
Computational Technologies
[in Russian]
23
,
15
30
(
2018
).
25.
V. P.
Shapeev
and
V. A.
Belyaev
,
Numerical methods and programming
[in Russian]
19
,
340
355
(
2018
).
26.
A. G.
Sleptsov
,
Modelirovanie v mekhanike
[in Russian]
5
,
101
126
(
1991
).
27.
L. G.
Semin
,
A. G.
Sleptsov
, and
V. P.
Shapeev
,
Computational Technologies
[in Russian]
1
,
90
98
(
1996
).
28.
V. I.
Isaev
,
V. P.
Shapeev
, and
S. A.
Eremin
,
Computational Technologies
[in Russian]
12
,
53
70
(
2007
).
29.
V. I.
Isaev
and
V. P.
Shapeev
,
Proceedings of the Steklov Institute of Mathematics
261
,
87
106
(
2008
).
30.
V. I.
Isaev
and
V. P.
Shapeev
,
Computat. Math. and Math. Phys.
50
,
1670
1681
(
2010
).
31.
S. K.
Golushko
,
S. V.
Idimeshev
, and
V. P.
Shapeev
,
Computational Technologies [in Russian]
18
,
31
43
(
2013
).
32.
E. V.
Vorozhtsov
and
V. P.
Shapeev
,
Numerical methods and programming
[in Russian]
18
,
80
102
(
2017
).
33.
E. V.
Vorozhtsov
and
V. P.
Shapeev
,
International Workshop on Computer Algebra in Scientific Computing
[in Russian]
8660
,
432
446
(
2014
).
34.
Y.
Saad
,
Numerical methods for large eigenvalue problems
(
Manchester University Press
,
1991
).
35.
R. P.
Fedorenko
,
Computat. Math. and Math. Phys.
4
,
559
564
(
1964
).
36.
B. N.
Jiang
and
A.
Povinelli
,
Computer Methods in Applied Mechanics and Engineering
81
,
13
37
(
1990
).
37.
C. L.
Chang
and
B. N.
Jiang
,
Computer Methods in Applied Mechanics and Engineering
84
,
247
255
(
1990
).
38.
P. B.
Bochev
and
M. D.
Gunzburger
,
Least-squares finite element methods
(
Springer-Verlag
New York
,
2009
).
39.
H.
Chen
,
C.
Min
, and
F.
Gibou
,
Computer Methods in Applied Mechanics and Engineering
31
,
19
60
(
2007
).
40.
S. P.
Timoshenko
and
S.
Woinowsky-Krieger
,
Theory of Plates and Shells
, 2dn edn (
McGraw-Hill Book Company
,
1959
).
This content is only available via PDF.