The Microarrays technology is growing rapidly in bioinformatics. Microarray is a tool for measuring thousands gene expressions level of a sample. Microarray can be used to diagnose cancer including carcinoma. Carcinoma is one of cancer type that originated from epithelial tissue. Microarray data of carcinoma which highly dimensionality would be clustered to help diagnosing carcinoma patients. A highly dimensional data usually need a long computation time. In this paper, carcinoma microarray data would be clustered using spectral clustering method since it had a good capability to reduce data dimension. The result of spectral clustering would be partitioned using Self Organizing Map (SOM) algorithm. SOM is a popular implementation of artificial neural network for clustering. The advantage of SOM algorithm is that it efficiently handle big data and robust to data noise. This research aims to implement spectral clustering and SOM to classify microarray data of carcinoma genes expression from 7457 genes. The result of this study obtained three clusters of carcinoma genes.

1.
L.
Gu
and
X.
Lu
, in
9ᵗʰ International Conference on Fuzzy Systems and Knowledge Discovery
, Chongqing, 2012 (
IEEE
,
Piscataway
,
2012
). pp.
738
741
.
2.
J. C.
Ang
,
A.
Mirzal
, and
H.
Haron
,
IEEE/ACM Transactions on Computational Biology and Bioinformatics
13
,
971
(
2016
).
3.
C. C.
Aggarwal
and
C. K.
Reddy
,
Data Clustering: Algorithms and Applications
(
CRC Press
,
Boca Raton
,
2014
).
4.
National Center for Biotechnology Information (NCBI), Genes and Expression
,
2014
. Available at https://www.ncbi.nlm.nih.gov/guide/genes-expression/
5.
D.
Stekel
,
Microarray Bioinformatics
(
Cambridge University Press
,
Cambridge
,
2003
).
6.
M. M.
Babu
, in
An Introduction to Microarray Data Analysis, in Computational Genomics: Theory and Application
, edited by
R. P.
Grant
(
Horizon Bioscience Press
,
Norwich
,
2004
). pp.
225
249
.
7.
N.
Kirkham
and
N. R.
Leimone
(Eds.),
Progress in Pathology
Volume
5
(
Greenwich Medical Media
,
London
,
2001
).
8.
B.
Luo
and
X. J.
Tang
,
Using Self-Organizing Map for Ideas Clustering of Group Argumentation
, in
5ᵗʰ International Conference on Knowledge Management in Asia Pacific (KMAP) and 11ᵗʰ International Symposium on Knowledge and Systems Sciences (KSS)
,
Xi’an
, 2010. (
School of Knowledge Science JAIST
,
Nomi
,
2010
). pp.
1
6
.
9.
M. J. A.
Berry
and
G.
Linoff
,
Data Mining Techniques: For Marketing, Sales and Customer Support
(
John Wiley and Sons Inc.
,
New York
,
1996
).
10.
P.
Sarlin
and
T.
Eklund
,
Fuzzy Clustering of the Self-Organizing Map: Some Applications on Financial Time Series
, in
Advances in Self-Organizing Maps, Proceedings 8ᵗʰ International Workshop WSOM 2011
,
Espoo
, 2011, edited by
J.
Laaksonen
and
T.
Honkela
, (
Springer
,
Heidelberg
,
2011
), pp.
40
50
.
11.
B.
Silva
and
N.
Marques
,
Feature Clustering with Self-Organizing Maps and An Application to Financial Time-Series for Portfolio Selection
, in
International Conference on Neural Computation
ICNC
,
Valencia
,
2010
, pp.
301
309
(2010).
12.
B. S.
Everitt
,
S.
Landau
,
M.
Leese
and
D.
Stahl
,
Cluster Analysis
, 5th edition (
John Wiley & Sons Inc.
,
Hoboken
,
2011
).
13.
U. V.
Luxburg
,
Stat. Comput.
17
,
395
(
2007
)
14.
D. T.
Larose
,
Discovering Knowledge in Data: An Introduction to Data Mining
(
John Wiley and Sons Inc.
,
Hoboken
,
2005
).
15.
J.
Han
,
M.
Kamber
, and
J.
Pei
,
Data Mining: Concepts and Techniques
, 3rd edition (
Elsevier
,
Amsterdam
,
2012
).
16.
H.
Demuth
and
M.
Beale
,
Neural Network Toolbox For Use with MATLAB®
(
The MathWorks Inc.
,
Natick
,
2003
).
17.
S. K.
Panda
, and
P. K.
Jana
,
J. Supercomput.
17
,
1505
(
2015
)
This content is only available via PDF.