Zinc ion (Zn2+) is an essential cofactor required by numerous metalloenzymes and is important for structural and regulatory systems in bacterial cells. Zn2+ is a trace element: bacterial cells require only very small quantities. High concentrations of Zn2+ are toxic to microorganisms. In the environment, bacteria may be subject to conditions where Zn2+ is either very limited or s at a toxic level. Due to the limitation of Zn2+ or the toxic effect of high levels of free Zn2+ ions, the bacteria need to carefully control the intracellular level of Zn2+. This paper aims to determine the mechanisms bacteria use to maintain the intracellular Zn2+ concentration and the adaptation mechanisms used by bacteria to grow in a Zn2+-limited environment. The role of Zn2+ in bacterial pathogenesis and virulence capacity will also be discussed. It is known that in bacteria, Zn2+ homeostasis is maintained by Zn2+-uptake/import and Zn2+-efflux/export systems. These two systems provide a balance between the requirement for the metal and its toxicity and therefore is essential for bacterial growth and survival. Metal ions, including Zn2+ have been demonstrated to be involved in various bacterial pathogeneses. Moreover, there is increasing evidence for the importance of Zn2+ in the virulence of various bacteria. Zn2+ is shown to be involved in biofilm formation, bacterial motility, antibiotic resistance, and survival against oxidative stress. Therefore, the ability of bacterial cells to maintain a homeostasis of Zn2+ is crucial for their growth, survival and virulence capacity.

1.
C. A.
Blindauer
,
M. D.
Harrison
,
J. A.
Parkinson
,
A. K.
Robinson
,
J. S.
Cavet
,
N. J.
Robinson
and
P. J.
Sadler
,
Proc. Nat. Acad. Sci. USA.
98
,
9593
9598
(
2001
).
3.
M.
Palmieri
,
L.
Russo
,
G.
Malgieri
,
S.
Esposito
,
I.
Baglivo
,
A.
Rivellino
,
B.
Farina
,
I.
de Paola
,
L.
Zaccaro
,
D.
Milardi
,
C.
Isernia
,
P. V.
Pedone
and
R.
Fattorusso
,
J. Inorg. Biochem.
131
,
30
36
(
2014
).
4.
R.
Choudhury
and
S.
Srivastava
,
Curr. Sci.
81
,
768
775
(
2001
).
5.
D. A.
Capdevila
,
J.
Wang
and
D. P.
Giedroc
,
J. Biol. Chem.
291
,
20858
20868
(
2016
).
6.
M.
Sabri
,
S.
Houle
, and
C. M.
Dozois
,
Infect. Immun.
77
,
1155
1164
(
2009
).
7.
B. A.
Eijkelkamp
,
J. R.
Morey
,
M. P.
Ween
,
C. L.
Ong
,
A. G.
McEwan
,
J. C.
Paton
and
C. A.
McDevitt
,
PLoS One.
9
,
e89427
(
2014
).
8.
B. D.
Corbin
,
E. H.
Seeley
,
A.
Raab
,
J.
Feldmann
,
M. R.
Miller
,
V. J.
Torres
,
K. L.
Anderson
,
B. M.
Dattilo
,
P. M.
Dunman
,
R.
Gerads
,
R. M.
Caprioli
,
W.
Nacken
,
W. J.
Chazin
and
E. P.
Skaar
,
Science
319
,
962
965
(
2008
).
9.
D.
Corbett
,
J.
Wang
,
S.
Schuler
,
G.
Lopez-Castejon
,
S.
Glenn
,
D.
Brough
,
P. W.
Andrew
,
J. S.
Cavet
and
I. S.
Roberts
,
Infect. Immun.
80
,
14
21
(
2012
).
10.
G. R.
Nielubowicz
,
S. N.
Smith
and
H. L.
Mobley
,
Infect. Immun.
78
,
2823
2833
(
2010
).
11.
M. C.
Abrantes
,
M. F.
Lopes
and
J.
Kok
,
PLoS One
6
,
e26519
(
2011
).
12.
C. E.
Outten
,
D. A.
Tobin
,
J. E.
Penner-Hahn
and
T. V.
O’Halloran
,
Biochemistry
40
,
10417
10423
(
2001
).
13.
14.
D. P.
Giedroc
and
A. I.
Arunkumar
,
Dalton Transactions
0
,
3107
3120
(
2007
).
15.
K.
Hantke
,
Curr. Opin. Microbiol.
8
,
196
202
(
2005
).
16.
S. I.
Patzer
and
K.
Hantke
,
J. Biol. Chem.
275
,
24321
24332
(
2000
).
17.
G.
Porcheron
,
A.
Garenaux
,
J.
Proulx
,
M.
Sabri
and
C. M.
Dozois
,
Front. Cell Infect. Microbiol.
3
,
90
(
2013
).
18.
B. R.
Chandra
,
M.
Yogavel
and
A.
Sharma
,
J. Mol. Biol.
367
,
970
982
(
2007
).
19.
G.
Grass
,
M. D.
Wong
,
B. P.
Rosen
,
R. L.
Smith
and
C.
Rensing
,
J. Bacteriol.
184
,
864
866
(
2002
).
20.
M.
Cerasi
,
J. Z.
Liu
,
S.
Ammendola
,
A. J.
Poe
,
P.
Petrarca
,
M.
Pesciaroli
,
P.
Pasquali
,
M.
Raffatellu
and
A.
Battistoni
,
Metallomics
6
,
845
853
(
2014
).
21.
G.
Grass
,
S.
Franke
,
N.
Taudte
,
D. H.
Nies
,
L. M.
Kucharski
,
M. E.
Maguire
and
C.
Rensing
,
J. Bacteriol.
187
,
1604
1611
(
2005
).
22.
C.
Guilhen
,
M. K.
Taha
and
F. J.
Veyrier
,
Front. Cell Infect. Microbiol.
3
,
102
(
2013
).
23.
O.
Kolaj-Robin
,
D.
Russell
,
K. A.
Hayes
,
J. T.
Pembroke
and
T.
Soulimane
,
FEBS Lett.
589
,
1283
1295
(
2015
).
24.
A.
Anton
,
C.
Grosse
,
J.
Reissmann
,
T.
Pribyl
and
D. H.
Nies
,
J. Bacteriol.
181
,
6876
6881
(
1999
).
25.
V. K.
Singh
,
A.
Xiong
,
T. R.
Usgaard
,
S.
Chakrabarti
,
R.
Deora
,
T. K.
Misra
and
R. K.
Jayaswal
,
Mol. Microbiol.
33
,
200
207
(
1999
).
26.
H. J.
Apell
,
Bioelectrochem.
63
,
149
156
(
2004
).
27.
C.
Rensing
,
B.
Mitra
and
B. P.
Rose
,
Proc. Nat. Acad. Sci. USA
94
,
14326
14333
(
1997
).
28.
G.
Grass
,
B.
Fan
,
B. P.
Rosen
,
S.
Franke
,
D. H.
Nies
and
C.
Rensing
,
J. Bacteriol.
183
,
4664
4667
(
2001
).
29.
S.
Khan
,
K. R.
Brocklehurst
,
G. W.
Jones
, and
A. P.
Morby
,
Biochem. Biophys. Res. Commun.
299
,
438
445
(
2002
).
30.
H.
Nikaido
and
Y.
Takatsuka
,
Biochem. Biophys. Acta.
1794
,
769
781
(
2009
).
31.
E. Y.
Valencia
,
V. S.
Braz
,
C.
Guzzo
and
M. V.
Marques
,
BMC Microbiol.
13
,
79
(
2013
).
32.
B.
Suryawati
, “
The role of L31 protein in Acinetobacter baumannii zinc homeostasis
,” Ph.D. thesis,
Flinders University
,
2017
.
33.
S.
Ammendola
,
P.
Pasquali
,
C.
Pistoia
,
P.
Petrucci
,
P.
Petrarca
,
G.
Rotilio
, and
A.
Battistoni
,
Infect Immun.
75
,
5867
5876
(
2007
).
34.
L.
Bayle
,
S.
Chimalapati
,
G.
Schoehn
,
J.
Brown
,
T.
Vernet
and
C.
Durmort
,
Mol Microbiol.
82
,
904
916
(
2011
).
35.
S. L.
Stafford
,
N. J.
Bokil
,
M. E. S.
Achard
,
R.
Kapetanovic
,
M. A.
Schembri
,
A. G.
McEwan
and
M. J.
Sweet
,
Biosci Rep.
33
,
541
554
(
2013
).
36.
P.
Laskaris
,
A.
Atrouni
,
J. A.
Calera
,
C.
d’Enfert
,
H.
Munier-Lehmann
,
J. M.
Cavaillon
,
J. P.
Latge
and
O.
Ibrahim-Granet
,
Antimicrob. Agents Chemother.
60
,
5631
5639
(
2016
).
37.
C.
Wu
,
J.
Labri
,
Y. D.
Tremblay
,
D.
Haine
,
M.
Mourez
and
M.
Jacques
,
J. Appl. Microbiol.
115
,
30
40
(
2013
).
38.
D. G.
Conrady
,
C. C.
Brescia
,
K.
Horii
,
A. A.
Weiss
,
D. J.
Hassett
and
A. B.
Herr
,
Proc. Nat. Acad. Sci. USA.
105
,
19456
19461
(
2008
).
39.
J. A.
Geoghegan
,
R. M.
Corrigan
,
D. T.
Gruszka
,
S.
Speziale
,
J. P.
O’Gara
,
J. R.
Potts
and
T. J.
Foster
,
J. Bacteriol.
192
,
5663
5673
(
2010
).
40.
J.
Lim
,
K. M.
Lee
,
S. H.
Kim
,
Y.
Kim
,
S. H.
Kim
,
W.
Park
and
S.
Park
,
Int. J. Food Microbiol.
149
,
159
170
(
2011
).
41.
J.
Labrie
,
G.
Pelletier-Jacques
,
V.
Deslandes
,
M.
Ramjeet
,
E.
Auger
,
J. H.
Nash
and
M.
Jacques
,
Vet. Res.
41
,
3
(
2010
).
42.
V.
Hancock
,
M.
Dahl
and
P.
Klemm
,
Appl Environ Microbiol.
76
,
3836
3841
(
2010
).
43.
S.
Ammendola
,
Y.
D’Amico
,
B.
Chirullo
,
R.
Drumo
,
D.
Ciavardelli
,
P.
Pasquali
and
A.
Battistoni
,
Metallomics
8
,
1217
(
2016
).
44.
D. B.
Kearns
,
P. J.
Bonner
,
D. R.
Smith
and
L. J.
Shimkets
,
J. Bacteriol.
184
,
1678
1684
(
2002
).
45.
A.
Tamilselvi
and
G.
Mugesh
,
J. Biol. Inorg. Chem.
13
,
1039
1053
(
2008
).
46.
M. I.
Hood
,
B. L.
Mortensen
,
J. L.
Moore
,
Y.
Zhang
,
T. E.
Kehl-Fie
,
N.
Sugitani
,
W. J.
Chazin
,
R. M.
Caprioli
and
E. P.
Skaar
,
PLoS Pathogen.
8
,
e1003068
(
2012
).
47.
P. D.
Ray
,
B. W.
Huang
and
Y.
Tsuji
,
Cell Signal.
24
,
981
990
(
2012
).
48.
K.
Jomova
and
M.
Valko
,
Toxicol.
283
,
65
87
(
2011
).
49.
K. F.
Smith
,
L. A.
Bibb
,
M. P.
Schmitt
and
D. M.
Oram
,
J. Bacteriol.
191
,
595
603
(
2009
).
50.
T. M.
Bray
and
W. J.
Bettger
,
Free Radic. Biol. Med.
8
,
281
291
(
1990
).
51.
A.
Gaballa
and
J. D.
Helmann
,
Mol. Microbiol.
45
,
997
1005
(
2002
).
This content is only available via PDF.