This paper concerns the optimal control of a mathematical model of a growing tumor and its interaction with the immune system. This model consists of four populations—tumor cells, dendritic cells (as an innate immune system), cytotoxic T cells, and helper T cells (as a specific immune system)—in the form of a system of ordinary differential equations. Some tumors present dendritic cell and such cells have a potential role in regulating the immune system. In this model, we assume that dendritic cells can activate cytotoxic T cells and, in turn, can clear out tumor cells. Furthermore, by adding controls as a treatment to the model, we minimize both the tumor cell population and the cost of treatment. We do this by applying the optimal control for this problem. First, Pontryagin’s Principle is used to characterize the optimal control. Then, the optimal system is solved numerically using the Forward-Backward Runge– Kutta method. Finally, the effect of each treatment is investigated. The numerical results show that these controls are effective in reducing the number of tumor cells.

1.
M. A.
Cooper
,
T. A.
Fehniger
and
A.
Fuchs
,
Trends Immunol.
26
,
3235
3241
(
2004
).
2.
G.
Ferlazzo
,
M. L.
Tsang
and
L.
Moretta
,
J. Exp. Med.
195
,
343
351
(
2002
).
3.
N.
Larmonier
,
J.
Fraszack
,
D.
Lakomy
,
B.
Bonnotte
and
E.
Katsanis
,
Cancer Immunol. Immunother.
59
,
1
11
(
2010
).
4.
S.
Sharma
and
G. P.
Samanta
,
J. Nonlinear Dyn.
,
98
,
1
13
(
2013
).
5.
A.
Matzavinos
,
M. A. J.
Chaplain
and
V. A.
Kuznetsov
,
Mathemat. Med. Biol.
21
,
1
34
(
2004
).
6.
L.
Preziosi
and
A.
Tosin
,
J. Mathemat. Biol.
58
,
625
656
(
2009
).
7.
Trisilowati
,
S. W.
McCue
and
D. G.
Mallet
,
ANZIAM J.
54
,
664
680
(
2013
).
8.
L. G.
de Pillis
,
K. R.
Fister
,
W.
Gu
,
T.
Head
,
K.
Maples
,
T.
Neal
,
A.
Murugan
, and
K.
Kozai
,
J. Biol. Syst
,
16
,
51
80
(
2008
).
9.
P.
Krishnapriya
and
M.
Pitchaimani
,
Int. J. Dynam. Control
5
,
872
892
(
2017
)
10.
C.
Dewi
and
Trisilowati
, “Optimal Control on Bladder Cancer Growth Model with BCG Immunotherapy and Chemotherapy”, in
Symposium on Biomathematics-2014, AIP Conference Proceeding
1651
, edited by
T.
Gotz
and
A.
Suryanto
(
American Institute of Physics
,
Melville, NY
,
2015
), pp.
53
58
.
11.
S.
Lenhart
and
J. T.
Workman
,
Optimal Control Applied to Biological Models
, (
Chapman and Hall/CRC
,
London
,
2007
).
This content is only available via PDF.