The Lindley distribution was introduced by Lindley in the context of Bayes inference.1 Its density function is obtained by mixing the exponential distribution, with scale parameter β, and the gamma distribution, with shape parameter 2 and scale parameter β. Recently, a new generalization of the Lindley distribution was proposed by Barco et al., called the inverse power Lindley distribution. 2 This paper will introduce an extension of the inverse power Lindley distribution using the Marshall–Olkin method, resulting in the Marshall–Olkin Extended Inverse Power Lindley (MOEIPL) distribution. The MOEIPL distribution offers a flexibility in representing data with various shapes. This flexibility is due to the addition of a tilt parameter to the inverse power Lindley distribution. Some properties of the MOEIPL are explored, such as its probability density function, cumulative distribution function, hazard rate, survival function, and quantiles. Estimation of the MOEIPL parameters was conducted using maximum likelihood method. The proposed distribution was applied to model the wind speed in Demak, Indonesia. The results illustrate the MOEIPL distribution and arre compared to Lindley, power Lindley, inverse Lindley, inverse power Lindley, gamma, and Weibull. Model comparison using the AIC shows that MOEIPL fits the data better than the other distributions.

1.
D. V.
Lindley
,
J R Stat Soc. Series B (Statistical Methodological)
,
102
107
(
1958
).
2.
K. V. P.
Barco
,
J.
Mazucheli
and
V.
Janeiro
,
Commun. Stat. Simul. Comput.
46
,
6308
6323
(
2017
).
3.
M. E.
Ghitany
,
B.
Atieh
and
S.
Nadarajah
,
Math. Comput. Simul.
78
,
493
506
(
2008
).
4.
H.
Krishna
,
K.
Kumar
,
Math. Comput. Simul.
82
,
281
294
(
2011
).
5.
B.
Singh
,
P. K.
Gupta
and
V. K.
Sharma
,
Stat. Res. Lett.
3
,
58
62
(
2014
).
6.
S. K.
Singh
,
U.
Singh
and
V. K.
Sharma
,
Appl. Math. Comput.
222
,
402
419
(
2013
).
7.
D. K.
Al-Mutairi
,
M. E.
Ghitany
and
D.
Kundu
,
Commun. Stat. Theory Methods
42
,
1443
1463
(
2013
).
8.
B.
Singh
and
P. K.
Gupta
,
Math. Comput. Simul.
82
,
1615
1629
(
2012
).
9.
J.
Mazucheli
and
J. A.
Achcar
,
Comput. Methods Prog. Biomed.
104
,
188
192
(
2011
).
10.
S.
Ali
,
M.
Aslam
and
S. M. A.
Kazmi
,
Appl. Math. Model
37
,
6068
6078
(
2013
).
11.
V. K.
Sharma
,
S. K.
Singh
,
U.
Singh
and
V.
Agiwal
,
J. Ind. Prod. Eng.
32
,
162
173
(
2015
).
12.
M. E.
Ghitany
,
D. K.
Al-Mutairi
,
N.
Balakrishnan
and
L. J.
Al-Enezi
,
Comput. Stat. Data Anal.
64
,
20
33
(
2013
).
13.
A. W.
Marshall
and
I.
Olkin
,
Biometrika
,
84
,
641
652
(
1997
).
14.
W.
Gui
,
Int. J. Stat. Probab.
2
,
63
72
(
2013
).
15.
M. E.
Ghitany
,
E. K.
Al-Husaini
and
R. A.
Al-Jarallah
,
J. Appl. Stat.
32
,
1025
1034
(
2005
).
16.
G. M.
Cordeiro
and
A. J.
Lemonte
,
Stat. Pap.
54
,
333
353
(
2013
).
17.
H. M.
Okasha
,
A. H.
El-Baz
,
A. M. K.
Tarabia
and
A. M.
Basheer
,
J. Egyptian Math. Soc.
25
,
343
349
(
2017
).
18.
K. K.
Jose
and
E.
Krishna
,
ProbStat. Forum
4
,
78
88
(
2011
).
19.
M. E.
Ghitany
,
F. A.
Al-Awadhi
and
L. A.
Alkhalfan
,
Commun. Stat. Theory Methods
36
,
1855
1866
(
2007
).
20.
P.
Jodra
,
Math. Comput. Simul.
81
,
851
859
(
2010
).
21.
S.
Nadarajah
,
H. S.
Bakouch
and
R.
Tahmasbi
,
Sankhya
,
73
,
331
359
(
2011
).
22.
PUSDATARU Central Java
,
Data Kecepatan Angin Rerata Bulanan Sta. Klimatologi Jragung Kab. Demak
(1 February
2018
).
This content is only available via PDF.