Biogas is a renewable energy source that is undergoing continual improvement in its technique and method of fermentation. The use of biogas in small industries or households is still facing un-fully utilized waste material, although it has a large potential to produce biogas. One of these underutilized waste materials comes from the tofu making industry, a common household industry in Indonesia, especially in Bandung. Generally,household-scale biogas productionuses a single bio-digester (one stage anaerobic fermentation) technology, which accommodates two main principles of biogas formation, namely the acetogenic stage and the methanogenic stage. The problems that arise from the use of a one-stage biogas digester are the imbalance of the fermentation process due to differences in environmental conditions at each stage, increasing of the organic load rate, the longer retention time of the organic compound, and low biogas productivity. Those issues result in un-optimized production. From this condition, a study of the application of biogas production through a two-stage anaerobic digestion fermentation system through fed-batch fermentation was conducted. We found that the decrease of the chemical oxygen demand (COD) value of tofu waste reached 21%-38% in acetogenic fermentation and 71% in the methanogenic digester. Biogas production yielded the highest methane gas composition value at 74.05%, and the highest biogas volume of 48.55 L/day, with highest energy potential value at 1249,2 kJ/day.

1.
E.
Mahajoeno
,
Dissertation, Institut Pertanian Bogor
,
Indonesia
,
2010
.
2.
S.
Subekti
,
Proceedings of Seminar Nasional Sains dan Teknologi ke -2
(
Fakultas Teknik Universitas Wahid Hasyim Semarang
,
2011
).
3.
Wagiman
,
Bioteknologi
4
,
41
45
(
2007
).
4.
K.
Heeg
,
M.
Pohl
,
J.
Mumme
,
M.
Klocke
and
E.
Nettmann
,
Syst. Appl. Microbiol.
37
,
590
600
(
2014
).
5.
P. K.
Sharma
,
N. A.
Khan
and
S.
Ayub
,
GJEAS
2
,
178
182
(
2012
).
6.
I. I.
Maile
and
E.
Muzenda
,
Proceedings of International Conference on Innovative Engineering Technologies (ICIET 2014)
(
Thailand
,
2014
), p.
28
29
.
7.
H. W.
Yen
, and
D. E.
Brune
,
Bioresour. Technol.
98
,
130
134
(
2007
).
8.
X.
Wang
,
G.
Yang
,
F.
Li
,
Feng
Y
,
Ren
G
and
X.
Han
,
Bioresour Technol
120
,
78
83
(
2013
).
9.
X.
Wang
,
X.
Lu
,
F.
Li
and
G.
Yang
,
PLoS One
9
,
1
7
(
2014
).
10.
D.
Deublein
and
A.
Steinhauser
.
Biogas from waste and renewable resources
(
Willey-VCH
,
Germany
,
2008
), pp.
20
28
.
11.
D.
Liu
,
R. J.
Zeng
and
I.
Angelidaki
,
Water Res.
40
,
2230
2236
(
2006
).
12.
H.
Qiang
,
D. L.
Langa
and
Y-Y.
Li
,
Bioresour. Technol.
103
,
21
27
(
2012
).
13.
G. D.
Zupancic
and
V.
Grilic
, ”Anaerobic Treatment and Biogas Production from Organic Waste Management of Organic Waste”, in
Management of Organic Waste
, edited by
S.
Kumar
(
InTechOpen
,
London
,
2012
), pp.
1
27
.
14.
A. S.
Nizami
,
A.
Orozco
,
E.
Groom
,
B.
Dieterich
and
J. D.
Murphy
,
Appl. Energ.
92
,
783
790
(
2012
).
15.
J. R.
Ventura
,
J.
Lee
and
D.
Jahng
,
J. Environ. Sci.
26
,
1274
1283
(
2014
).
16.
P.
Iriani
,
Y.
Suprianti
and
F.
Yulistiani
,
Jurnal Teknik Kimia dan Lingkungan
1
,
1
10
(
2017
).
This content is only available via PDF.