The boron-oxygen-related defect is formed under illumination and passivated under illumination at higher temperatures in silicon wafers. A model is set up combining the kinetics of the BO-related defect with the carrier injection density in PERC solar cells, its power behavior and an energy yield calculation of a PV system. The carrier injection dependent regeneration rate is discussed and reported values of the effective attempt frequency are parameterized carrier injection dependent. The model and its parameter are validated at published degradation and regeneration data from relevant industry companies with a good match. Thus, the model is used to calculate the temporal defect populations development over ten years for a climate data set of Halle (Central Europe). It is found that the recombination active defect complex is formed to over 95% after 100 days mainly from January to March during the first year, the defect passivation is reached to about 30% within the first year occurring in summer months and to over 90% in the 7th year. The calculation of the energy yield loss for 20 years PV system lifetime is below 0.4%rel compared to the light-induced degradation unaffected case. Thus, the PV system energy yield loss of 0.4%rel during system lifetime is much lower compared to 2.15%rel maximal power degradation of the modeled PERC solar cell. BO-related defect regeneration during solar cell processing might be therefore to be reconsidered under economic and quality considerations. A sensitivity analysis on the regeneration rate does not change this picture much.

1.
H.
Fischer
,
W.
Pschunder
, In
Proceedings 10th IEEE Photovoltaic Specialists Conference
(
1973
)
404
.
2.
J.
Schmidt
,
A.G.
Aberle
,
R.
Hezel
, In
Proceedings 26ᵗʰ IEEE Photovoltaic Specialists Conference
(
1997
)
13
.
3.
S.W.
Glunz
,
S.
Rein
,
W.
Warta
,
J.
Knobloch
,
W.
Wettling
,
Sol. Energ. Mat. Sol. Cells
65
,
219
(
2001
).
4.
K.
Bothe
,
J.
Schmidt
,
Journal of Applied Physics
99
,
013701
(
2006
).
5.
K.
Bothe
,
R.
Sinton
,
J.
Schmidt
,
Progress in Photovoltaics
13
,
287
(
2005
).
6.
A.
Herguth
,
G.
Schubert
,
M.
Kaes
, and
G.
Hahn
. “
Avoiding boron-oxygen related degradation in highly boron doped Cz silicon
”. In
Proceedings of the 21sᵗ EU PVSEC
(
Dresden, Germany
,
2006
) p.
530
.
7.
A.
Herguth
,
G.
Hahn
,
J. Appl. Phys.
108
,
114509
(
2010
).
8.
K.
Bothe
,
J.
Schmidt
,
J. Appl. Phys.
99
,
013701
(
2006
).
9.
P.
Hamer
,
N.
Nampalli
,
Z.
Hameiri
,
M.
Kim
,
D.
Chen
,
N.
Gorman
,
B.
Hallam
,
M.
Abbott
,
S.
Wenham
,
Energy Procedia
92
,
791
800
(
2016
).
10.
S.
Wilking
,
C
Beckh
,
S.
Ebert
,
A.
Herguth
,
G.
Hahn
,
Sol. Energ. Mat. Sol. Cells
131
,
2
8
(
2014
).
11.
B.
Hallam
,
M.
Abbott
,
J.
Bilbao
,
P.
Hamer
,
N.
Gorman
,
M.
Kim
,
D.
Chen
,
K.
Hammerton
,
D.
Payne
,
C.
Chan
,
N.
Nampalli
,
S.
Wenham
,
Energy Procedia
92
,
42
51
(
2016
).
12.
M.
Gläser
,
D.
Lausch
,
Energy Procedia
77
,
592
598
(
2015
).
13.
C.
Herring
,
N.
Johnson
,
C.
Van de Walle
,
Phys. Rev. B
64
(
12
),
125209
(
2001
).
14.
S.
Wilking
,
S.
Ebert
,
C.
Beckh
,
A.
Herguth
,
G.
Hahn
, “
Of Apples and Oranges: Why Comparing BO Regeneration Rates Requires Injection Level Correction
.” In
Proceedings of the 32nd EU PVSEC
(
Munich, Germany
,
2016
) p.
487
494
.
15.
Wilking
,
Das Wasserstoff-Modell der Bor-Sauerstoff-Regeneration
,“ Ph.D. thesis,
University Konstanz
,
2017
.
16.
Steckenreiter
,
V.
,
Walter
,
D. C.
,
Schmidt
,
J.
AIP Advances
,
7
(
3
),
035305
(
2017
).
17.
M.
Müller
,
Energy Procedia
92
,
138
144
(
2016
).
18.
H.
Hieslmair
, “
Time constants of degradation, regeneration, and destabilization of the BO related defect
.” In
Proceedings of the 43ʳᵈ Photovoltaic Specialists Conference (PVSC
) (
Portland, USA
,
2016
), pp.
0645
0650
.
19.
S.W.
Glunz
,
E.
Schäffer
,
S.
Rein
, “
ANALYSIS OF THE DEFECT ACTIVATION IN CZ-SILICON BY TEMPERATUREDEPENDENT BIAS-INDUCED DEGRADATION OF SOLAR CELLS
,” In
Proceedings of the 3ʳᵈ World Conference on Photovoltaic Energy Conversion
(Japan,
2003
) pp.
919
922
.
20.
K.
Ramspeck
,
S.
Zimmermann
,
H.
Nagel
,
A.
Metz
,
Y.
Gassenbauer
,
B.
Birkmann
,
A.
Seidl
, “
Light induced degradation of rear passivated mc-Si solar cells
.” In
Proceedings of the 27th European Photovoltaic Solar Energy Conference
(
Frankfurt, Germany
,
2012
), p.
861
.
21.
F.
Kersten
,
P.
Engelhart
,
H.-C.
Ploigt
,
F.
Stenzel
,
K.
Petter
,
T.
Lindner
,
A.
Szpeth
,
M.
Bartzsch
,
A.
Stekolnikov
,
M.
Scherff
,
J.
Heitmann
,
J.W.
Müller
, “
A new light induced volume degradation effect of mc-Si solar cells and modules
,” In
Proceedings of the 31ˢᵗ EU PVSEC
(
Hamburg, Germany
,
2015
) p.
1822
.
22.
F.
Wolny
,
T.
Weber
,
M.
Müller
,
G.
Fischer
,
Energy Procedia
38
,
523
530
(
2013
).
23.
K.
Lee
,
M.
Kim
,
J.-K.
Lim
,
J.-H.
Ahn
,
M.-I.
Hwang
,
E.-C.
Cho
, “
NATURAL RECOVERY FROM LID: REGENERATION UNDER FIELD CONDITIONS?
,” In
Proceedings of 31sᵗ EU PVSEC
(
Hamburg, Germany
,
2015
) pp.
1835
1837
.
24.
M.
Müller
, “Solar cell fundamentals.” in
Handbook of optoelectronic device modeling and simulation
vol.
II
, edited by
J.
Piprek
(
CRC Press, Taylor & Francis Group
,
Boca Raton, FL, USA
,
2017
) pp.
383
413
.
25.
V.
QUASCHNING
, Regenerative Energiesysteme: Technologie-Berechnung-Simulation (
Carl Hanser Verlag GmbH Co KG, Munich, Germany
,
2015
) pp.
55
88
.
26.
R.G. Ross
Jr
,
M. I.
Smokler
,
Flat-Plate Solar Array Project: Final Report
: Volume
6
, (
1986
).
27.
J.A.
Duffie
and
W.A.
Beckman
,
Solar engineering of thermal processes
(
John Wiley & Sons
,
2013
).
28.
W. Heydenreich
Heydenreich
,
B.
Müller
,
C.
Reise
, “
DESCRIBING THE WORLD WITH THREE PARAMETERS: A NEW APPROACH TO PV MODULE POWER MODELLING
,” In
Proceedings of 23ʳᵈ EU PVSEC
(
Valencia, Spain
,
2008
) pp.
2786
2789
.
29.
M.
Strobel
,
R.
Gottschalg
,
G.
Friesen
,
H.G.
Beyer
, “
Uncertainty in Photovoltaic performance parameters – dependence on location and material
.” In
Proc. 17ᵗʰ International PVSEC
(
Fukuoka, Japan
,
2007
) pp.
379
380
.
This content is only available via PDF.