A three-architecture method for screening new materials’ viability as carrier-selective contacts for silicon solar cells is presented. Test-structure solar cells were fabricated with a standard silicon heterojunction contact for the front side, and one of three treatments on the back: bare silicon, intrinsic amorphous silicon (i-aSi:H), or n-type amorphous silicon on an i-aSi:H passivation layer. Then, the candidate contact material of interest was deposited on the back of each test structure and the cells were finished with evaporated Al. By analysing the current-voltage characteristics of each type of architecture, the carrier selectivity and surface passivation quality of novel contact materials or material stacks can be rapidly screened. To demonstrate the utility of this method, we present a preliminary investigation of nitride compounds as electron-selective contacts in silicon solar cells, in particular zinc tin nitride (ZnSnN2), which is naturally n-type and has favourable band alignments with c-Si. ZnSnN2 was deposited by reactive sputtering as an electron contact on each test structure. No passivation was observed, but decent electron-selectivity was observed when in direct contact with the silicon wafer. When combined with intrinsic amorphous silicon, poor performances were obtained with poor selectivity and the occurrence of an S-shape, likely due to insufficient selectivity of the ZTN. Similar results were obtained for 2 nm and 20 nm thick layers, indicating selectivity did not result from the Al over-layer, but was in fact due to the ZTN itself. Overall, this work shows the three-architecture screening method is a useful tool for assessing novel contact materials for silicon heterojunction solar cells.

1.
Masuko
,
K.
 et al 
Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell
.
IEEE J. Photovoltaics
4
,
1433
1435
(
2014
).
2.
Adachi
,
D.
,
Hernández
,
J. L.
&
Yamamoto
,
K.
Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency
.
Appl. Phys. Lett.
107
,
233506
(
2015
).
3.
Yoshikawa
,
K.
 et al 
Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
.
Nat. Energy
2
,
17032
(
2017
).
4.
Holman
,
Z. C.
 et al 
Current Losses at the Front of Silicon Heterojunction Solar Cells
.
IEEE J. Photovoltaics
2
,
7
15
(
2012
).
5.
Battaglia
,
C.
 et al 
Silicon heterojunction solar cell with passivated hole selective MoOx contact
.
Appl. Phys. Lett.
104
,
113902
(
2014
).
6.
Bivour
,
M.
,
Temmler
,
J.
,
Steinkemper
,
H.
&
Hermle
,
M.
Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells
.
Sol. Energy Mater. Sol. Cells
142
,
34
41
(
2015
).
7.
Gerling
,
L. G.
 et al 
Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells. Sol
.
Energy Mater. Sol. Cells
145
,
109
115
(
2016
).
8.
Boccard
,
M.
,
Ding
,
L.
,
Koswatta
,
P.
,
Bertoni
,
M.
&
Holman
,
Z.
 Evaluation of metal oxides prepared by reactive sputtering as carrier-selective contacts for crystalline silicon solar cells. in
2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)
1
3
(
IEEE
,
2015
). doi:
9.
Mews
,
M.
,
Lemaire
,
A.
&
Korte
,
L.
Sputtered Tungsten Oxide as Hole Contact for Silicon Heterojunction Solar Cells
.
IEEE J. Photovoltaics
1
7
(
2017
). doi:
10.
Geissbühler
,
J.
 et al 
22.5% Efficient Silicon Heterojunction Solar Cell With Molybdenum Oxide Hole Collector
.
Appl. Phys. Lett.
107
, (
2015
).
11.
Neusel
,
L.
,
Bivour
,
M.
&
Hermle
,
M.
Selectivity issues of MoOx based hole contacts
.
Energy Procedia
124
,
425
434
(
2017
).
12.
Avasthi
,
S.
 et al 
Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl
.
Phys. Lett.
102
,
203901
(
2013
).
13.
Bullock
,
J.
 et al 
Lithium Fluoride Based Electron Contacts for High Efficiency n-Type Crystalline Silicon Solar Cells
.
Adv. Energy Mater.
6
,
1600241
(
2016
).
14.
Wan
,
Y.
 et al 
Conductive and Stable Magnesium Oxide Electron-Selective Contacts for Efficient Silicon Solar Cells
.
Adv. Energy Mater.
(
2016
). doi:
15.
Boccard
,
M.
,
Yang
,
X.
,
Weber
,
K.
&
Holman
,
Z. C.
Passivation and carrier selectivity of TiO2 contacts combined with different passivation layers and electrodes for silicon solar cells. in
Conference Record
of the IEEE Photovoltaic Specialists Conference
, (
2016
).
16.
Allen
,
T. G.
 et al 
A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells
.
Adv. Energy Mater.
7
,
1602606
(
2017
).
17.
Yang
,
X.
,
Weber
,
K.
,
Hameiri
,
Z.
&
De Wolf
,
S.
Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells
.
Prog. Photovoltaics Res. Appl.
25
,
896
904
(
2017
).
18.
Nagamatsu
,
K. A.
 et al 
Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell
.
Appl. Phys. Lett.
106
,
123906
(
2015
).
19.
Wu
,
W.
 et al 
Dopant-free multilayer back contact silicon solar cells employing V2Ox/metal/V2Ox as an emitter
.
RSC Adv.
7
,
23851
23858
(
2017
).
20.
Bullock
,
J.
 et al 
Stable Dopant-Free Asymmetric Heterocontact Silicon Solar Cells with Efficiencies above 20%
.
ACS Energy Lett.
3
,
508
513
(
2018
).
21.
Holman
,
Z. C.
,
De Wolf
,
S.
&
Ballif
,
C.
Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell
.
Light Sci. Appl.
2
, (
2013
).
22.
Cuevas
,
A.
,
Luque
,
A.
,
Eguren
,
J.
&
Alamot
,
J.
Del. 50 per cent more output power from an albedo-collecting flat panel using bifacial solar cells
.
Sol. Energy
29
, (
1982
).
23.
Wang
,
J.
,
Mulligan
,
P.
,
Brillson
,
L.
&
Cao
,
L. R.
Review of using gallium nitride for ionizing radiation detection
.
Appl. Phys. Rev.
2
,
31102
(
2015
).
24.
Parks
,
D. A.
&
Tittmann
,
B. R.
Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride
.
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
,
1216
1222
(
2014
).
25.
Arca
,
E.
 et al 
Band Edge Positions and Their Impact on the Simulated Device Performance of ZnSnN2-Based Solar Cells
.
IEEE J. Photovoltaics
8
,
110
117
(
2018
).
26.
Punya
,
A.
&
Lambrecht
,
W. R. L.
Band offsets between ZnGeN2, GaN, ZnO, and ZnSnN2 and their potential impact for solar cells
.
Phys. Rev. B
88
,
75302
(
2013
).
27.
Wang
,
T.
,
Ni
,
C.
&
Janotti
,
A.
Band alignment and p-type doping of ZnSnN2
.
Phys. Rev. B
95
,
205205
(
2017
).
28.
Fioretti
,
A. N.
Development of Zinc Tin Nitride for Application as an Earth-Abundant Photovoltaic Absorber
,” Ph.D. Thesis,
Colorado School of Mines
,
2017
.
29.
Fioretti
,
A. N.
 et al 
Effects of Hydrogen on Acceptor Activation in Ternary Nitride Semiconductors
.
Adv. Electron. Mater.
3
,
1600544
(
2017
).
30.
Yang
,
X.
 et al 
Tantalum Nitride Electron-Selective Contact for Crystalline Silicon Solar Cells
.
Adv. Energy Mater.
1800608
(
2018
). doi:
31.
Fioretti
,
A. N.
,
Toberer
,
E. S.
,
Zakutayev
,
A.
&
Tamboli
,
A. C.
Effects of low temperature annealing on the transport properties of zinc tin nitride
. in
2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)
1
5
(
IEEE
,
2015
). doi:
32.
Korte
,
L.
,
Rößler
,
R.
&
Pettenkofer
,
C.
Direct determination of the band offset in atomic layer deposited ZnO/hydrogenated amorphous silicon heterojunctions from X-ray photoelectron spectroscopy valence band spectra
.
J. Appl. Phys.
115
,
203715
(
2014
).
33.
Lany
,
S.
Semiconducting transition metal oxides
.
J. Phys. Condens. Matter
27
,
283203
(
2015
).
34.
Lany
,
S.
Band-structure calculations for the 3d transition metal oxides in GW
.
Phys. Rev. B
87
,
85112
(
2013
).
35.
Stevanović
,
V.
,
Lany
,
S.
,
Zhang
,
X.
&
Zunger
,
A.
Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies
.
Phys. Rev. B
85
,
115104
(
2012
).
36.
Martinez
,
A. D.
,
Fioretti
,
A. N.
,
Toberer
,
E. S.
&
Tamboli
,
A. C.
Synthesis, structure, and optoelectronic properties of II–IV–V 2 materials
.
J. Mater. Chem. A
5
,
11418
11435
(
2017
).
37.
Fioretti
,
A. N.
 et al 
Combinatorial insights into doping control and transport properties of zinc tin nitride
.
J. Mater. Chem. C
3
, (
2015
).
38.
Boccard
,
M.
,
Ding
,
L.
,
Koswatta
,
P.
,
Bertoni
,
M.
&
Holman
,
Z.
Evaluation of metal oxides prepared by reactive sputtering as carrier-selective contacts for crystalline silicon solar cells
. in
2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015
(
2015
). doi:
39.
Messmer
,
C.
,
Bivour
,
M.
,
Schon
,
J.
,
Glunz
,
S. W.
&
Hermle
,
M.
Numerical simulation of silicon heterojunction solar cells featuring metal oxides as carrier-selective contacts
.
IEEE J. Photovoltaics
8
,
456
464
(
2018
).
40.
Stevanović
,
V.
,
Lany
,
S.
,
Ginley
,
D. S.
,
Tumas
,
W.
&
Zunger
,
A.
Assessing capability of semiconductors to split water using ionization potentials and electron affinities only
.
Phys. Chem. Chem. Phys
3706
,
3706
3714
(
2014
).
This content is only available via PDF.