Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse.

1.
N. H.
Yen
and
L. Y.
Wang
,
Propellants, Explosives, Pyrotechnics
37
(
2
),
143
155
(
2012
).
2.
D. L.
Frost
,
F.
Zhang
,
S. B.
Murray
and
S.
McCahan
, presented at the
12th International Detonation Symposium
,
San Diego, CA
,
2002
, published in the
12th International Detonation Symposium Proceedings (2002)
, pp.
693
701
.
3.
F.
Zhang
,
K.
Gerrard
and
R. C.
Ripley
,
Journal of Propulsion and Power
25
(
4
),
845
858
(
2009
).
4.
R. C.
Ripley
,
F.
Zhang
and
F.-S.
Lien
,
Proceedings of the Royal Society A: Mathematical
,
Physical and Engineering Science
468
(
2142
),
1564
1590
(
2012
).
5.
F.
Zhang
,
R. C.
Ripley
,
A.
Yoshinaka
,
C. R.
Findlay
,
J.
Anderson
and
B.
von Rosen
,
Shock Waves
25
(
3
),
239
254
(
2015
).
6.
J. M.
Peuker
,
H.
Krier
and
N.
Glumac
,
Proceedings of the Combustion Institute
34
(
2
),
2205
2212
(
2013
).
7.
C. L.
Mader
and
S.
Goldstein
,
8th International Symposium on Detonation
,
Albuquerque, NM
,
1985
, published in the
8th International Detonation Symposium Proceedings NSWC-MP-86-194, (1985)
, pp.
979
984
.
8.
W. A.
Trzciński
,
J.
Paszula
and
S.
Grys
,
Propellants, Explosives, Pyrotechnics
35
(
2
),
85
92
(
2010
).
9.
W. A.
Trzciński
,
K.
Barcz
,
J.
Paszula
and
S.
Cudziło
,
Propellants, Explosives, Pyrotechnics
39
(
1
),
40
50
(
2014
).
10.
W. A.
Trzciński
and
L.
Maiz
,
Propellants, Explosives, Pyrotechnics
40
(
5
),
632
644
(
2015
).
11.
W. A.
Trzciński
,
S.
Cudziło
and
J.
Paszula
,
Propellants, Explosives, Pyrotechnics
32
(
6
),
502
508
(
2007
).
12.
F.
Zhang
,
M.
Gauthier
and
C. V.
Cojocaru
,
Propellants, Explosives, Pyrotechnics
,
page numbers not assigned by the time of this paper
(
2017
).
13.
B.
Utela
,
D.
Storti
,
R.
Anderson
and
M.
Ganter
,
Journal of Manufacturing Processes
10
(
2
),
96
104
(
2008
).
14.
S.
Johnson
,
M.
Clemenson
and
N.
Glumac
,
Applied Spectroscopy
71
(
1
),
78
86
(
2017
).
15.
J. M.
Peuker
,
H.
Krier
and
N.
Glumac
,
14th International Detonation Symposium, Couer d’Alene ID
, 2010 published in the
14th International Detonation Symposium Proceedings ONR 333-05-2
, (
2010
), pp.
730
739
.
16.
J. M.
Peuker
,
P.
Lynch
,
H.
Krier
and
N.
Glumac
,
Propellants, Explosives, Pyrotechnics
38
(
4
),
577
585
(
2013
).
17.
S. S.
Harilal
,
J.
Yeak
,
B. E.
Brumfield
,
J. D.
Suter
and
M. C.
Phillips
,
Journal of Analytical Atomic Spectrometry
31
(
6
),
1192
1197
(
2016
).
18.
T. N.
Piehler
,
F. C.
DeLucia
,
C. A.
Munson
,
B. E.
Homan
,
A. W.
Miziolek
and
K. L.
McNesby
,
Appl. Opt.
44
(
18
),
3654
3660
(
2005
).
19.
J. R.
Carney
,
J. M.
Lightstone
,
T. P.
McGrath
and
R. J.
Lee
,
Propellants, Explosives, Pyrotechnics
34
(
4
),
331
339
(
2009
).
20.
A. T.
Patrascu
,
S. N.
Yurchenko
and
J.
Tennyson
,
Monthly Notices of the Royal Astronomical Society
449
(
4
),
3613
3619
(
2015
).
21.
P. W.
Cooper
,
Explosives engineering
. (
Wiley-VCH
,
New York
,
1996
), pp.
284
287
.
This content is only available via PDF.