High-pressure experiments have successfully produced a variety of gold nanostructures by compressing polymer coated spherical nanoparticles. We apply atomistic simulation to understand the role of the soft polymer response in determining the pressure-driven assembly of gold nanostructures. Quasi-isentropic experiments have shown that 1D, 2D and 3D nanostructures can be formed and recovered from dynamic compression of fcc superlattices of alkanethiol-coated gold nanocrystals on Sandia’s Veloce pulsed power accelerator. Molecular modeling has shown that the dimensionality of the final structures depends on the orientation of the superlattice and the uniaxial loading. We describe the role of coating ligand binding strength, on ligand migration and deformation processes during pressure-driven coalescence of the cores into permanent nanowires, nanosheets and 3D structures.

1.
T. P.
Bigioni
,
L.
Xiao-Min
,
T. T.
Nguyen
,
E. I.
Corwin
,
T. A.
Witten
, and
H. M.
Jaeger
,
Nature Mater.
5
,
265
(
2006
).
2.
J.
He
,
P.
Kanjanaboos
,
N. L.
Frazer
,
A.
Weis
,
X.-M.
Lin
, and
H. M.
Jaeger
,
Small
6
,
1449
(
2010
).
3.
H.
Wu
,
F.
Bai
,
Z.
Sun
,
R. E.
Haddad
,
D. M.
Boye
,
Z.
Wang
,
J. Y.
Huang
, and
H.
Fan
,
J. Am. Chem. Soc.
132
,
12826
(
2010
).
4.
J. M. D.
Lane
and
G. S.
Grest
,
Phys. Rev. Lett.
104
,
235501
(
2010
).
5.
J. M. D.
Lane
and
G. S.
Grest
,
Nanoscale
6
,
5132
(
2014
).
6.
K. M.
Salerno
,
D. S.
Bolintineanu
,
J. M. D.
Lane
, and
G. S.
Grest
,
Phys. Rev. Lett.
113
,
258301
(
2014
).
7.
W.
Li
,
H.
Fan
, and
J.
Li
,
Nano Lett.
14
,
4951
(
2014
).
8.
B.
Li
,
X.
Wen
,
R.
Li
,
Z.
Wang
,
P. G.
Clem
, and
H.
Fan
,
Nature Commun.
5
,
4179
(
2014
).
9.
B.
Li
,
K.
Bian
,
J. M. D.
Lane
,
K. M.
Salerno
,
G. S.
Grest
,
T.
Ao
,
R.
Hickman
,
J.
Wise
,
Z.
Wang
, and
H.
Fan
,
Nature Commun.
8
,
14778
(
2017
).
10.
T. R.
Mattsson
,
J. M. D.
Lane
,
K. R.
Cochrane
,
M. P.
Desjarlais
,
A. P.
Thompson
,
F.
Pierce
, and
G. S.
Grest
,
Phys. Rev. B
81
,
054103
(
2010
).
11.
S.
Root
,
T. A.
Haill
,
J. M. D.
Lane
,
A. P.
Thompson
,
G. S.
Grest
,
D. G.
Schroen
, and
T. R.
Mattsson
,
J. Appl. Phys.
114
,
103502
(
2013
).
12.
S.
Plimpton
,
J. Comp. Phys.
117
, p.
1
(
1995
), LAMMPS code available at http://lammps.sandia.gov.
13.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
,
J. Am. Chem. Soc.
106
,
6638
(
1984
).
14.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
15.
S. W.
Siu
,
K.
Pluhackova
, and
R. A.
Bockmann
,
J. Chem. Theory Comput.
8
,
1459
(
2012
).
16.
O.
Borodin
and
G. D.
Smith
,
J. Phys. Chem. B
110
,
6279
(
2006
).
17.
S.
Foiles
,
M.
Baskes
, and
M.
Daw
,
Phys. Rev. B
33
,
7983
(
1986
).
18.
W.
Luedtke
and
U.
Landman
,
J. Phys. Chem. B
102
,
6566
(
1998
).
19.
B. J.
Henz
,
T.
Hawa
, and
M. R.
Zachariah
,
Langmuir
24
,
773
(
2008
).
20.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer simulation using particles
(
crc Press
,
1988
).
21.
K. M.
Salerno
,
D. S.
Bolintineanu
,
J. M. D.
Lane
, and
G. S.
Grest
,
Phys. Rev. E
91
,
062403
(
2015
).
22.
R.
Ravelo
,
B. L.
Holian
,
T. C.
Germann
, and
P. S.
Lomdahl
,
Phys. Rev. B
70
,
014103
(
2004
).
This content is only available via PDF.