On-going research into the complexities of polyurea behavior under shock loading has led to some breakthroughs in the predictive simulation of how this nominally soft polymer responds under high velocity impact conditions. This work expands upon a previously reported modified pressure-dependent viscoelastic constitutive model for polyurea and its performance under ballistic impact. Specifically, we present recent enhancements to the model including nonlinearites in the Hugoniot and improvements in the high-temperature viscoelastic behavior, which substantially improves accuracy and extends the model’s range of applicable conditions. These improvements are demonstrated through correlation of computations for a suite of normal and pressure-shear plate impact experiments well documented in the open literature. Additionally, microparticle impact experiments were performed on polyurea using a laser-induced particle impact test (LIPIT) technique. High-speed imaging of the impact mechanics revealed elastic particle rebound at low velocity but penetration at high velocity. Simulation of these LIPIT experiments demonstrates good accuracy of the polyurea model under these conditions as well as provides insight into the mechanisms governing the results observed.

1.
J.
Qiao
,
A.V.
Amrikhizi
,
K.
Schaaf
,
S.
Nemat-Nasser
, and
G.
Wu
,
Mech. of Mater.
43
,
598
607
(
2011
).
2.
S.S.
Sarva
,
S.
Deschanel
,
M.C.
Boyce
, and
W.
Chen
,
Polymer
48
,
2208
2213
(
2007
).
3.
C.M.
Roland
,
J.N.
Twigg
,
Y.
Vu
, and
P.H.
Mott
,
Polymer
48
,
574
578
(
2007
).
4.
J.
Zhao
,
W.G.
Knauss
, and
G.
Ravichandran
,
Mech. Time-Depend. Mater.
11
,
289
308
(
2007
).
5.
Amirkhizi
AV
,
McGee
J
, and
Nemat-Nasser
S
,
Phil. Mag.
86
(
36
),
5847
5866
(
2006
).
6.
Chevellard
,
G.
,
K.
Ravi-Chandar
, and
K.M.
Liechti
,
Mech. Time-Depend. Mater.
16
,
181
203
, (
2012
).
7.
Williams
,
M.L.
,
R.F.
Landel
, and
J.D.
Ferry
,
J. Amer. Chem. Soc.
,
77
(
14
),
3701
3707
, (
1955
).
8.
R.J.
Clifton
and
T.
Jiao
, “Pressure and Strain-Rate Sensitivity of an Elastomer: (1) Pressure-Shear Plate Impact Experiments; (2) Constitutive Modeling,” in
Elastomeric Polymers with High Rate Sensitivity
, ed. by
R.G.S.
Barsoum
(
Elsevier Science
,
Oxford
2015
), pp.
17
65
.
9.
C.T.
Key
and
J.E.
Gorfain
, “A Modified Rate-Dependent Ballistic Impact Model for Polyurea,” in
Elastomeric Polymers with High Rate Sensitivity
, ed. by
R.G.S.
Barsoum
(
Elsevier Science
,
Oxford
2015
), pp.
304
318
.
10.
J.M.
McGlaun
and
S.L.
Thompson
,
Int. J. Impact Engng.
10
,
351
360
, (
1990
).
11.
F.R.
Svingala
,
M.J.
Hargather
,
G.S.
Settles
,
Int. J. Imp. Engng.
50
,
76
82
, (
2012
).
12.
W.
Mock
,
S.
Bartyczak
,
G.
Lee
,
J.
Fedderly
, and
K.
Jordan
, “
Dynamic properties of polyurea 1000
,” in
Shock Compression of Condensed Matter-2009, AIP Conference Proceedings
1195
, ed. by
M. L.
Elert
 et al, (
American Institute of Physics
,
2009
), pp.
1241
1244
.
13.
G.S.
Settles
,
R.M.
Young
,
F.R.
Svingala
, and
J.F.
Glusman
, “Optical Shock Hugoniot Measurements of Transparent and Translucent Polymers,” in
Elastomeric Polymers with High Rate Sensitivity
, ed. by
R.G.S.
Barsoum
(
Elsevier Science
,
Oxford
2015
), pp.
102
114
.
14.
D.T.
Casem
and
A.J.
Hsieh
,
Plate-Impact Measurements of a Select Model Poly(urethane urea) Elastomer
, ARL-TR-6482, (
U.S. Army Research Laboratory
,
Aberdeen Proving Ground, MD
,
2013
).
15.
R.G.
Barsoum
(private communication,
2014
).
16.
W.
Awad
and
C.
Wilkie
,
Polymer
51
(
11
),
2277
2285
, (
2010
).
17.
T.L.
Mariappan
and
C.A.
Wilkie
,
Polimery
58
(
5
),
371
384
, (
2013
).
18.
A.
Sanchez-Ferrer
,
D.
Rogez
, and
P.
Martinoty
,
Macromolecular Chem. and Phys.
211
(
15
),
1712
1721
, (
2010
).
19.
D.
Veysset
,
A.J.
Hsieh
,
S.E.
Kooi
, and
K.A.
Nelson
,
Polymer
123
,
30
(
2017
).
20.
D.J.
Steinberg
,
Equation of State and Strength Properties of Selected Materials
, UCRL-MA-106439 Change 1, (
Lawrence Livermore National Laboratory
,
Livermore, CA
,
1996
).
This content is only available via PDF.