Molecular dynamics in proteins animate and play a vital role for biologically relevant processes of these biomacromolecules. Quasielastic incoherent neutron scattering (QENS) is a well-suited experimental method to study protein dynamics from the picosecond to several nanoseconds and in the Ångström length-scale. In QENS experiments of protein solutions hydrogens act as reporters for the motions of methyl groups or amino acids to which they are bound. Neutron Spin-Echo spectroscopy (NSE) offers the highest energy resolution in the field of neutron spectroscopy and allows the study of slow collective motions in proteins up to several hundred nanoseconds and in the nanometer length-scale. In the following manuscript I will review recent studies that stress the relevance of molecular dynamics for protein folding and for conformational transitions of intrinsically disordered proteins (IDPs). During the folding collapse the protein is exploring its accessible conformational space via molecular motions. A large flexibility of partially folded and unfolded proteins, therefore, is mandatory for rapid protein folding. IDPs are a special case as they are largely unstructured under physiological conditions. A large flexibility is a characteristic property of IDPs as it allows, for example, the interaction with various binding partners or the rapid response to different conditions.

1.
A.M.
Stadler
,
M.M.
Koza
, and
J.
Fitter
,
J. Phys. Chem. B
119
,
72
(
2015
).
2.
A.M.
Stadler
,
E.
Pellegrini
,
M.
Johnson
,
J.
Fitter
, and
G.
Zaccai
,
Biophys. J.
102
,
351
(
2012
).
3.
A.M.
Stadler
,
F.
Demmel
,
J.
Ollivier
, and
T.
Seydel
,
Phys. Chem. Chem. Phys.
18
,
21527
(
2016
).
4.
H.J.
Dyson
and
P.E.
Wright
,
Acc. Chem. Res.
50
,
105
(
2017
).
5.
H.
Frauenfelder
,
B.H.
McMahon
, and
P.W.
Fenimore
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
8615
(
2003
).
6.
D.
Eliezer
and
P.E.
Wright
,
J. Mol. Biol.
263
,
531
(
1996
).
7.
M.
Jamin
and
R.L.
Baldwin
,
J. Mol. Biol.
276
,
491
(
1998
).
8.
A.K.
Dunker
,
C.J.
Oldfield
,
J.
Meng
,
P.
Romero
,
J.Y.
Yang
,
J.
Chen
,
V.
Vacic
,
Z.
Obradovic
, and
V.N.
Uversky
,
BMC Genomics
9
,
S1
(
2008
).
9.
T.N.
Cordeiro
,
F.
Herranz-Trillo
,
A.
Urbanek
,
A.
Estaña
,
J.
Cortés
,
N.
Sibille
, and
P.
Bernadó
,
Curr. Opin. Struct. Biol.
42
,
15
(
2017
).
10.
D.
Richter
,
M.
Monkenbusch
,
A.
Arbe
, and
J.
Colmenero
,
Neutron Spin Echo in Polymer Systems
(
Springer Berlin Heidelberg
,
2005
).
11.
A.M.
Stadler
,
L.
Stingaciu
,
A.
Radulescu
,
O.
Holderer
,
M.
Monkenbusch
,
R.
Biehl
, and
D.
Richter
,
J. Am. Chem. Soc.
136
,
6987
(
2014
).
12.
R.
Biehl
and
D.
Richter
,
J. Phys. Condens. Matter
26
,
503103
(
2014
).
13.
14.
H.J.
Dyson
and
P.E.
Wright
,
Nat Rev Mol Cell Biol
6
,
197
(
2005
).
15.
P.E.
Wright
and
H.J.
Dyson
,
Curr. Opin. Struct. Biol.
19
,
31
(
2009
).
16.
K.
Sugase
,
H.J.
Dyson
, and
P.E.
Wright
,
Nature
447
,
1021
(
2007
).
17.
J.
Song
,
L.-W.
Guo
,
H.
Muradov
,
N.O.
Artemyev
,
A.E.
Ruoho
, and
J.L.
Markley
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
1505
(
2008
).
18.
G.
Harauz
,
N.
Ishiyama
,
C.M.
Hill
,
I.R.
Bates
,
D.S.
Libich
, and
C.
Fares
,
Micron
35
,
503
(
2004
).
19.
V.N.
Uversky
,
Protein Sci.
11
,
739
(
2002
).
20.
V.N.
Uversky
,
J.R.
Gillespie
, and
A.L.
Fink
,
Proteins
41
,
415
(
2000
).
21.
E.
Polverini
,
A.
Fasano
,
F.
Zito
,
P.
Riccio
, and
P.
Cavatorta
,
Eur. Biophys. J.
28
,
351
(
1999
).
22.
M.
Grimaldo
,
F.
Roosen-Runge
,
M.
Hennig
,
F.
Zanini
,
F.
Zhang
,
N.
Jalarvo
,
M.
Zamponi
,
F.
Schreiber
, and
T.
Seydel
,
Phys. Chem. Chem. Phys.
17
,
4645
(
2015
).
23.
M.
Grimaldo
,
F.
Roosen-Runge
,
F.
Zhang
,
T.
Seydel
, and
F.
Schreiber
,
J. Phys. Chem. B
118
,
7203
(
2014
).
24.
A.M.
Stadler
,
L.
van Eijck
,
F.
Demmel
, and
G.
Artmann
,
J. R. Soc. Interface
8
,
590
(
2011
).
25.
M.
Monkenbusch
,
A.
Stadler
,
R.
Biehl
,
J.
Ollivier
,
M.
Zamponi
, and
D.
Richter
,
J. Chem. Phys.
143
,
75101
(
2015
).
27.
V.
Receveur
,
P.
Calmettes
,
J.C.
Smith
,
M.
Desmadril
,
G.
Coddens
, and
D.
Durand
,
Proteins
28
,
380
(
1997
).
29.
A.J.
Banchio
and
G.
Nägele
,
J. Chem. Phys.
128
,
104903
(
2008
).
30.
M.
Hennig
,
F.
Roosen-Runge
,
F.
Zhang
,
S.
Zorn
,
M.W.A.
Skoda
,
R.M.J.
Jacobs
,
T.
Seydel
, and
F.
Schreiber
,
Soft Matter
8
,
1628
(
2012
).
32.
F.X.
Gallat
,
A.
Laganowsky
,
K.
Wood
,
F.
Gabel
,
L.
van Eijck
,
J.
Wuttke
,
M.
Moulin
,
M.
Hartlein
,
D.
Eisenberg
,
J.P.
Colletier
,
G.
Zaccai
, and
M.
Weik
,
Biophys. J.
103
,
129
(
2012
).
33.
P.
Bernadó
,
E.
Mylonas
,
M. V
Petoukhov
,
M.
Blackledge
, and
D.I.
Svergun
,
J. Am. Chem. Soc.
129
,
5656
(
2007
).
34.
R.
Inoue
,
R.
Biehl
,
T.
Rosenkranz
,
J.
Fitter
,
M.
Monkenbusch
,
A.
Radulescu
,
B.
Farago
, and
D.
Richter
,
Biophys. J.
99
,
2309
(
2010
).
This content is only available via PDF.