We have reanalyzed quasielastic neutron scattering data measured for three prototypical ionic liquids characterized by increasingly longer alkyl chains using two standard models of different complexity. The first one contains only two main components representing a long-range translational diffusion process plus a faster localized-like motion. The second model includes an additional component in order to account for the possibility of having more than one type of localized motion with different characteristic time scales. Our results show the complexity of the relaxation landscape of ionic liquids, indicating that even the more complex model provides only a qualitative average picture of such complex dynamics. The comparison of both models allows to asses also the robustness of the parameters obtained from the fits. Finally the results for the three different ionic liquids are compared in order to determine the effect of the length of the alkyl chain in the translational dynamics of ionic liquids, showing a clear decrease in diffusivity when passing from the ethyl (n=2) to the butyl (n=4) alkyl chain, but a much smaller effect when adding two extra C atoms to the chain.

1.
N. V.
Plechkova
and
K. R.
Seddon
,
Chem. Soc. Rev.
37
,
123
150
(
2008
).
2.
Ionic Liquids in Synthesis
, edited by
P.
Wasserscheid
and
T.
Welton
(
Wiley-VCH
,
New York
,
2008
)
3.
E. W.
Castner
, Jr.
and
J. F.
Wishart
,
J. Chem. Phys.
132
,
120901
(
2010
).
4.
M. N.
Kobrak
,
Adv. Chem. Phys.
139
,
85
137
(
2008
).
5.
H.
Weingärtner
,
Angew. Chem. Int. Ed.
47
,
654
670
(
2008
).
6.
T. L.
Greaves
and
C. J.
Drummond
,
Chem. Rev.
108
,
206
237
(
2008
).
7.
C. A.
Angell
,
Y.
Ansari
, and
Z.
Zhao
,
Faraday Discuss.
154
,
9
27
(
2012
).
8.
D. R.
MacFarlane
,
N.
Tachikawa
,
M.
Forsyth
,
J. M.
Pringle
,
P. C.
Howlett
,
G. D.
Elliott
,
J. H.
Davis
, Jr.
,
M.
Watanabe
,
P.
Simonf
and
C. A.
Angell
,
Energy Environ. Sci.
7
,
232
250
(
2014
).
9.
T.
Torimoto
,
T.
Tsuda
,
K.
Okazaki
, and
S.
Kuwabata
,
Adv. Mater.
22
,
1196
1221
(
2010
).
10.
J. P.
Hallet
and
T.
Welton
,
Chem. Rev.
111
,
3508
3576
(
2011
).
11.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
,
Chem. Rev.
115
,
6357
6426
(
2015
).
13.
R. M.
Lynden-Bell
,
M. G.
Del Pópolo
,
T. G. A.
Youngs
,
J.
Johanoff
,
C. G.
Hanke
,
J. B.
Harper
, and
C.C.
Pinilla
,
Acc. Chem. Res.
40
,
1138
1145
(
2007
).
14.
E. J.
Maginn
,
J. Phys.: Condens. Matter
21
,
373101
(
2009
).
15.
F.
Dommert
,
K.
Wendler
,
R.
Berger
,
L. D.
Site
, and
C.
Holm
,
Chem Phys Chem.
13
,
1625
1637
(
2012
).
16.
E. I.
Izgorodina
,
Phys. Chem. Chem. Phys.
13
,
4189
4207
(
2011
).
17.
K.
Shimizu
,
C. E. S.
Bernardes
, and
J. N.
Canongia Lopes
,
Pure Appl. Chem.
86
,
119
133
(
2014
).
18.
S.
Zahn
,
M.
Brehm
,
M.
Brüssel
,
O.
Hollóczki
,
M.
Kohagen
,
S.
Lehmann
,
F.
Malberg
,
A.
Sanmartin Pensado
,
M.
Schöppke
,
H.
Weber
, and
B.
Kirchner
,
J. Mol. Liq.
192
,
71
76
(
2014
).
19.
O.
Russina
,
A.
Triolo
,
L.
Gontrani
, and
R.
Caminiti
,
J. Phys. Chem. Lett.
3
,
27
33
(
2012
).
20.
K.
Shimizu
,
M. F.
Costa Gomes
,
A. A.H.
Pádua
,
L. P.N.
Rebelo
, and
J. N.
Canongia Lopes
,
J. Molec. Struct. – THEOCHEM
946
,
70
76
(
2010
).
21.
A.
Triolo
,
O.
Russina
,
V.
Arrighi
,
F.
Juranyi
,
S.
Janssen
, and
C. M.
Gordon
,
J. Chem. Phys.
119
,
8549
8557
(
2003
).
22.
A.
Triolo
,
O.
Russina
,
C.
Hardacre
,
M.
Nieuwenhyzen
,
M. A.
Gonzalez
, and
H.
Grimm
,
J. Phys. Chem. B
109
,
22061
22066
(
2005
).
23.
O.
Russina
,
M.
Beiner
,
C.
Pappas
,
M.
Russina
,
V.
Arrighi
,
T.
Unruh
,
C. L.
Mullan
,
C.
Hardacre
, and
A.
Triolo
,
J. Phys. Chem. B
113
,
8469
8474
(
2009
).
24.
Y.
Inamura
,
O.
Yamamuro
,
S.
Hayashi
, and
H.
Hamaguchi
,
Physica B
385-386
,
732
734
(
2006
).
25.
E.
Mamontov
,
H.
Luo
, and
S.
Dai
,
J. Phys. Chem. B
113
,
159
169
(
2009
).
26.
E.
Mamontov
,
G. A.
Baker
,
H.
Luo
, and
S.
Dai
,
Chem Phys Chem
12
,
944
950
(
2011
).
27.
J. P.
Embs
,
T.
Burankova
,
E.
Reichert
, and
R.
Hempelmann
,
J. Phys. Chem. B
116
,
13265
13271
(
2012
).
28.
J. P.
Embs
,
T.
Burankova
,
E.
Reichert
,
V.
Fossog
, and
R.
Hempelmann
,
J. Phys. Soc. Jpn.
82
,
SA003
(
2013
).
29.
T.
Burankova
,
R.
Hempelmann
,
A.
Wildes
, and
J. P.
Embs
,
J. Phys. Chem. B
118
,
14452
14460
(
2014
).
30.
T.
Burankova
,
E.
Reichert
,
V.
Fossog
,
R.
Hempelmann
, and
J. P.
Embs
,
J. Mol. Liq.
192
,
199
207
(
2014
).
31.
T.
Burankova
,
R.
Hempelmann
,
V.
Fossog
,
J.
Ollivier
,
T.
Seydel
and
J. P.
Embs
,
J. Phys. Chem. B
119
,
10643
10651
(
2015
).
32.
O.
Yamamuro
,
T.
Yamada
,
M.
Kofu
,
M.
Nakakoshi
, and
M.
Nagao
,
J. Chem. Phys.
135
,
54508
(
2011
).
33.
M.
Kofu
,
M.
Nagao
,
T.
Ueki
,
Y.
Kitazawa
,
Y.
Nakamura
,
S.
Sawamura
,
M.
Watanabe
, and
O.
Yamamuro
,
J. Phys. Chem. B
117
,
2773
2781
(
2013
).
34.
M.
Kofu
,
M.
Tyagi
,
Y.
Inamura
,
K.
Miyazaki
, and
O.
Yamamuro
,
J. Chem. Phys.
143
,
234502
(
2015
).
35.
M. L.
Hoarfrost
,
M.
Tyagi
,
R. A.
Segalman
, and
J. A.
Reimer
,
J. Phys. Chem. B
116
,
8201
8209
(
2012
).
36.
K. S.
Panesar
,
P.
Judeinstein
, and
J.-M.
Zanotti
,
J. Phys. Soc. Jpn.
82
,
SA013
(
2013
).
37.
B.
Aoun
,
M. A.
Gonzalez
,
J.
Ollivier
,
M.
Russina
,
Z.
Izaola
,
D. L.
Price
, and
M.-L.
Saboungi
,
J. Phys. Chem. Lett.
1
,
2503
2507
(
2010
).
38.
B.
Aoun
,
M. A.
Gonzalez
,
M.
Russina
,
D. L.
Price
, and
M.-L.
Saboungi
,
J. Phys. Soc. Jpn.
82
,
SA002
(
2013
).
39.
Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science
,
M.
Bée
(
Adam Hilger
,
Bristol
,
1988
).
40.
J.
Qvist
,
H.
Schober
, and
B.
Halle
,
J. Chem. Phys.
134
,
144508
(
2011
).
41.
B.
Aoun
,
A.
Goldbach
,
S.
Kohara
,
J.-F.
Wax
,
M. A.
González
, and
M.-L.
Saboungi
,
J. Phys. Chem. B
114
,
12623
12628
(
2010
).
42.
B.
Aoun
,
A.
Goldbach
,
M. A.
González
,
S.
Kohara
,
D. L.
Price
, and
M.-L.
Saboungi
,
J. Chem. Phys.
134
,
104509
(
2011
).
43.
D.
Richard
,
M.
Ferrand
, and
G. J.
Kearley
,
J. Neutron Res.
4
,
33
39
(
1996
).
44.
K. S.
Singwi
and
A.
Sjölander
,
Phys. Rev.
119
,
863
871
(
1960
).
46.
H. A.
Every
,
A. G.
Bishop
,
D. R.
MacFarlane
,
G.
Orädd
, and
M.
Forsyth
,
J. Mater. Chem.
11
,
3031
3036
(
2001
).
47.
M.
Kohagen
,
M.
Brehm
,
Y.
Lingscheid
,
R.
Giernoth
,
J.
Sangoro
,
F.
Kremer
,
S.
Naumov
,
C.
Iacob
,
J.
Kärger
,
R.
Valiullin
, and
B.
Kirchner
,
J. Phys. Chem. B
115
,
15280
15288
(
2012
).
48.
H.
Tokuda
,
K.
Hayamizu
,
K.
Ishii
,
M. A.
Bin Hasan Susan
, and
M.
Watanabe
,
J. Phys. Chem. B
109
,
6103
6110
(
2005
).
49.
W. C.
Su
,
C. H.
Chou
,
D. S. H.
Wong
, and
M. H.
Li
,
Fluid Phase Equil.
252
,
74
78
(
2007
).
50.
F.
Volino
and
A. J.
Dianoux
,
Mol. Phys.
41
,
271
279
(
1980
).
51.
F.
Volino
,
J.-C.
Perrin
,
S.
Lyonnard
,
J. Phys. Chem. B
110
11217
(
2006
).
52.
D. S.
Sivia
,
C. J.
Carlile
,
W. S.
Howells
, and
S.
König
,
Physica B
182
,
341
348
(
1992
).
53.
L. C.
Pardo
,
M.
Rovira-Esteva
,
S.
Busch
,
J.-F.
Moulin
, and
J. Ll.
Tamarit
,
Phys. Rev. E
84
,
046711
(
2011
).
54.
D.
Monserrat
,
A.
Vispa
,
L. C.
Pardo
,
R.
Tolchenov
,
S.
Mukhopadhyay
, and
F.
Fernández-Alonso
,
J. Phys.: Conf. Series
663
,
012009
(
2015
).
55.
S.
Busch
,
C.
Smuda
,
L. C.
Pardo
, and
T.
Unruh
,
J. Am. Chem. Soc.
132
,
3232
3233
(
2010
).
56.
A.
Vispa
,
S.
Busch
,
J. Ll.
Tamarit
,
T.
Unruh
,
F.
Fernández-Alonso
, and
L. C.
Pardo
,
Phys. Chem. Chem. Phys.
18
,
3975
3981
(
2016
).
This content is only available via PDF.