Tree cricket hearing shows all the features of an actively amplified auditory system, particularly spontaneous oscillations (SOs) of the tympanal membrane. As expected from an actively amplified auditory system, SO frequency and the peak frequency in evoked responses as observed in sensitivity spectra are correlated. Sensitivity spectra also show compressive non-linearity at this frequency, i.e. a reduction in peak height and sharpness with increasing stimulus amplitude. Both SO and amplified frequency also change with ambient temperature, allowing the auditory system to maintain a filter that is matched to song frequency. In tree crickets, remarkably, song frequency varies with ambient temperature. Interestingly, active amplification has been reported to be switched ON and OFF. The mechanism of this switch is as yet unknown. In order to gain insights into this switch, we recorded and analysed SOs as the auditory system transitioned from the passive (OFF) state to the active (ON) state. We found that while SO amplitude did not follow a fixed pattern, SO frequency changed during the ON-OFF transition. SOs were first detected above noise levels at low frequencies, sometimes well below the known song frequency range (0.5-1 kHz lower). SO frequency was observed to increase over the next ∼30 minutes, in the absence of any ambient temperature change, before settling at a frequency within the range of conspecific song. We examine the frequency shift in SO spectra with temperature and during the ON/OFF transition and discuss the mechanistic implications. To our knowledge, such modulation of active auditory amplification, and its dynamics are unique amongst auditory animals.

1.
N.
Mhatre
,
F.
Montealegre-Z
,
R.
Balakrishnan
, and
D.
Robert
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
E1444
(
2012
).
2.
E.L.
Morley
and
A.C.
Mason
,
J. Comp. Physiol. A
201
,
1147
(
2015
).
3.
N.
Mhatre
and
D.
Robert
,
Curr. Biol.
23
,
1952
(
2013
).
4.
N.
Mhatre
,
G.
Pollack
, and
A.
Mason
,
Biol. Lett.
12
,
20160016
(
2016
).
5.
N.
Mhatre
,
J. Comp. Physiol. - A
201
,
19
(
2015
).
6.
M.C.
Göpfert
and
D.
Robert
,
Act. Process. Otoacoustic Emiss
.
Hear
.
30
,
191
(
2007
).
7.
B.
Warren
,
A.N.
Lukashkin
, and
I.J.
Russell
,
Proc. Biol. Sci.
277
,
1761
(
2010
).
8.
S.
Karak
,
J.S.
Jacobs
,
M.
Kittelmann
,
C.
Spalthoff
,
R.
Katana
,
E.
Sivan-Loukianova
,
M.A.
Schon
,
M.J.
Kernan
,
D.F.
Eberl
, and
M.C.
Göpfert
,
Sci. Rep.
5
,
17085
(
2015
).
9.
T.
Hamasaki
,
M.E.
Holwill
,
K.
Barkalow
, and
P.
Satir
,
Biophys. J.
69
,
2569
(
1995
).
10.
N.
Mhatre
,
F.
Montealegre-Z
,
R.
Balakrishnan
, and
D.
Robert
,
J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol.
195
,
453
(
2009
).
11.
N.
Mhatre
,
M.
Bhattacharya
,
D.
Robert
, and
R.
Balakrishnan
,
J. Exp. Biol.
214
,
2569
(
2011
).
12.
W.
Bialek
,
Annu. Rev. Biophys. Biophys. Chem.
16
,
455
(
1987
).
13.
P.
Martin
,
A.J.
Hudspeth
,
F.
Jülicher
, and
F.
Julicher
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
14380
(
2001
).
14.
N.
Mhatre
,
F.
Montealegre-Z
,
R.
Balakrishnan
, and
D.
Robert
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
E1444
(
2012
).
15.
S.
Metrani
and
R.
Balakrishnan
,
J. Orthoptera Res.
14
,
1
(
2005
).
16.
S.
Camalet
,
T.
Duke
,
F.
Jülicher
, and
J.
Prost
,
Proc. Natl. Acad. Sci. U. S. A.
97
,
3183
(
2000
).
17.
I.H.
Riedel-Kruse
,
A.
Hilfinger
,
J.
Howard
, and
F.
Jülicher
,
HFSP J.
1
,
192
(
2007
).
18.
J.E.
Yack
,
Microsc. Res. Tech.
63
,
315
(
2004
).
19.
S.
Humphries
,
Proc. Natl. Acad. Sci.
110
,
14693
(
2013
).
20.
S.
Camalet
,
F.
Julicher
, and
J.
Prost
,
Phy. Rev. Lett.
82
,
1590
(
1999
).
21.
N.
Mhatre
,
F.
Montealgre-Z
,
R.
Balakrishnan
, and
D.
Robert
,
Soc. Francaise d’Acoustique, Acoustics
,
2287
(
2012
).
22.
C.
Bergevin
,
B.
Epp
, and
S.W.F.
Meenderink
,
AIP Conf. Proc.
1403
,
7
(
2011
).
23.
T.A.J.
Duke
and
F.
Jülicher
, in
Act. Process. Otoacoustic Emiss
., edited by
G.A.
Manley
,
R.R.
Fay
, and
A.N.
Popper
(
Springer
New York
,
2007
), pp.
63
92
.
This content is only available via PDF.