Distortion-product otoacoustic emissions (DPOAEs) are used in clinics and research to noninvasively ascertain the functional state of the cochlea. According to a widely accepted model, the cubic distortion product at 2f1 - f2 consists of a nonlinear-distortion component, which is generated in the overlap region of the two primary tones, and a coherent-reflection component arising at the tonotopic place of the distortion-product frequency. Pulsing the f2 primary in the presence of a f1 tone enables the separation of the two DPOAE components in time-domain recordings due to their different latencies. However, short-pulse DPOAE responses show larger amplitudes and shorter latencies when interchanging the temporal arrangement of the primary tones, i.e. triggering DPOAE generation with a f1 short pulse in the presence of a f2 tone. The present work utilizes a one-dimensional implementation of a nonlinear hydrodynamic cochlea model for the human cochlea to simulate cochlear distortion products for the two short-pulse acquisition paradigms. Matrix formulation of the equations of motion was used to compute the solution directly in the time domain. The properties of the simulated cochlear distortion products closely match experimental data from normal-hearing subjects. The results suggest that the temporal arrangement of the primary tones has a distinct influence on the mechanoelectrical transduction near the f2 place which is reflected by changes in the DPOAE responses.

1.
D. T.
Kemp
,
Arch. Otorhinolaryngol.
224
,
37
45
(
1979
).
2.
C. A.
Shera
and
J. J.
Guinan
 Jr.
,
J. Acoust. Soc. Am.
105
,
782
798
(
1999
).
3.
D.
Zelle
,
J. P.
Thiericke
,
E.
Dalhoff
, and
A. W.
Gummer
,
J. Acoust. Soc. Am.
138
,
3475
3490
(
2015
).
4.
D.
Zelle
,
M.
Krokenberger
,
A. W.
Gummer
, and
E.
Dalhoff
, ”
Effects of Temporal Primary-Tone Arrangement on DPOAE Properties in Humans
,” in
Proceeding of the 13th International Workshop on the Mechanics of Hearing
,
St. Catharines
,
2017
, edited by
C.
Bergevin
and
S.
Puria
(
AIP Publishing
,
Melville, NY
, to be published).
5.
J. B.
Allen
,
J. Acoust. Soc. Am.
61
,
110
119
(
1977
).
6.
F.
Mammano
and
R.
Nobili
,
J. Acoust. Soc. Am.
93
,
3320
3332
(
1993
).
7.
R.
Nobili
and
F.
Mammano
,
J. Acoust. Soc. Am.
99
,
2244
2255
(
1996
).
8.
A.
Vetešńık
and
A. W.
Gummer
,
J. Acoust. Soc. Am.
131
,
3914
3934
(
2012
).
9.
R.
Ghaffari
,
A. J.
Aranyosi
, and
D. M.
Freeman
,
Proc. Natl. Acad. Sci.
104
,
16510
16515
(
2007
).
10.
A. W.
Gummer
,
W.
Hemmert
, and
H. P.
Zenner
,
Proc. Natl. Acad. Sci.
93
,
8727
8732
(
1996
).
11.
D. D.
Greenwood
,
J. Acoust. Soc. Am.
87
,
2592
2605
(
1990
).
12.
S.
Puria
,
J. Acoust. Soc. Am.
113
,
2773
2789
(
2003
).
13.
M. L.
Whitehead
,
B. B.
Stagner
,
G. K.
Martin
, and
B. L.
Lonsbury-Martin
,
J. Acoust. Soc. Am.
100
,
1663
1679
(
1996
).
14.
S.
Vinay
and
C. J.
Moore
,
Hear. Res.
240
,
93
101
(
2008
).
15.
A.
Vetešńık
,
D.
Turcanu
,
E.
Dalhoff
, and
A. W.
Gummer
,
Hear. Res.
256
,
21
38
(
2009
).
16.
V.
Vencovský
and
A.
Vetešńık
, ”
Theoretical Study of Onset of Cubic Distortion Product Otoacoustic Emissions
,” in
Proceeding of the 13th International Workshop on the Mechanics of Hearing
,
St. Catharines
,
2017
, edited by
C.
Bergevin
and
S.
Puria
(
AIP Publishing
,
Melville, NY
, to be published).
This content is only available via PDF.