Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle’s phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle’s active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle’s ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.

1.
L.
Robles
and
M. A.
Ruggero
,
Physiol. Rev.
81
,
1305
1352
(
2001
).
2.
A. J.
Hudspeth
,
Nat. Rev. Neurosci.
15
,
600
614
(
2014
).
3.
Y.
Choe
,
M. O.
Magnasco
, and
A. J.
Hudspeth
,
Proc. Natl. Acad. Sci. USA
95
,
15321
15326
(
1998
).
4.
V. M.
Egúıluz
,
M.
Ospeck
,
Y.
Choe
,
A. J.
Hudspeth
, and
M. O.
Magnasco
,
Phys. Rev. Lett.
84
,
5232
5235
(
2000
).
5.
S.
Camalet
,
T.
Duke
,
F.
Jülicher
, and
J.
Prost
,
Proc. Natl. Acad. Sci. USA
97
,
3183
3188
(
2000
).
6.
S. H.
Strogatz
,
Nonlinear Dynamics And Chaos
(
Perseus Books Publishing L. L. C.
,
Reading, Massachusetts
,
1994
).
7.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
(
The MIT Press
,
Cambridge, Massachusetts
,
2007
).
8.
P.
Martin
,
D.
Bozovic
,
Y.
Choe
, and
A. J.
Hudspeth
,
J. Neurosci.
23
,
4533
4548
(
2003
).
9.
J.
Tinevez
,
F.
Jülicher
, and
P.
Martin
,
Biophys. J.
93
,
4053
4067
(
2007
).
10.
D.
Ó Maoiléidigh
,
E. M.
Nicola
, and
A. J.
Hudspeth
,
Proc. Natl. Acad. Sci. USA
109
,
1943
1948
(
2012
).
11.
J. D.
Salvi
,
D.
Ó Maoiléidigh
,
B. A.
Fabella
,
M.
Tobin
, and
A. J.
Hudspeth
,
Proc. Natl. Acad. Sci. USA
112
,
E1000
E1009
(
2015
).
12.
J. D.
Salvi
,
D.
Ó Maoiléidigh
, and
A. J.
Hudspeth
,
Biophys. J.
111
,
1
15
(
2016
).
13.
R. L.
Stratonovich
,
Topics In the Theory of Random Noise
, Vol.
2
(
Gordon and Breach
,
New York-London
,
1967
).
14.
J. P.
Gleeson
and
F.
O’Doherty
,
SIAM Journal on Applied Mathematics
66
,
1669
1688
(
2006
).
15.
F.
Jülicher
,
K.
Dierkes
,
B.
Lindner
,
J.
Prost
, and
P.
Martin
,
Eur. Phys. J. E
29
,
449
460
(
2009
).
16.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization (A universal concept in nonlinear sciences)
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2003
).
17.
C. W.
Gardiner
,
Handbook of stochastic methods: for Physics, Chemistry and the Natural Sciences
, 3rd ed. (
Springer-Verlag
,
New York
,
2004
).
18.
L.
Gammaitoni
,
P.
Hänggi
,
P.
Jung
, and
F.
Marchesoni
,
Rev. Mod. Phys.
70
,
223
287
(
1998
).
19.
F.
Jaramillo
and
K.
Wiesenfeld
,
Nat. Neurosci.
1
,
384
388
(
1998
).
20.
J. K.
Douglass
,
L.
Wilkens
,
E.
Pantazelou
, and
F.
Moss
,
Nature
365
,
337
340
(
1993
).
21.
A. C.
Crawford
and
R.
Fettiplace
,
J. Physiol.
306
,
79
125
(
1980
).
22.
P.
Martin
and
A. J.
Hudspeth
,
Proc. Natl. Acad. Sci. USA
96
,
14306
14311
(
1999
).
23.
H.
Koyama
,
E. R.
Lewis
,
E. L.
Leverenz
, and
R. A.
Baird
,
Brain Research
250
,
168
172
(
1982
).
24.
D.
Ó Maoiléidigh
and
A. J.
Hudspeth
,
Proc. Natl. Acad. Sci. USA
110
,
5474
5479
(
2013
).
25.
J.-H.
Nam
,
A. W.
Peng
, and
A. J.
Ricci
,
Biophys. J.
108
,
2633
2647
(
2015
).
26.
A. S.
Kozlov
,
J.
Baumgart
,
T.
Risler
,
C. P. C.
Versteegh
, and
A. J.
Hudspeth
,
Nature
474
,
376
379
(
2011
).
27.
D.
Ó Maoiléidigh
and
F.
Jülicher
,
J. Acoust. Soc. Am.
128
,
1175
1190
(
2010
).
28.
C. A.
Shera
,
J. Acoust. Soc. Am.
114
,
244
262
(
2003
).
This content is only available via PDF.