In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.

1.
J. E.
Midwinter
,
Photonics in switching
.
Academic Press
,
2012
.
2.
H.
Gibbs
,
Optical bistability: controlling light with light
.
Elsevier
,
2012
3.
R. W.
Boyd
,
Nonlinear optics
.
Academic press
,
2003
.
4.
A.-B. M.
Ibrahim
,
D. R.
Tilley
, and
J.
Osman
, “
Optical bistability from ferroelectric Fabry-Pérot interferometer
,”
Ferroelectrics
, vol.
355
, no.
1
, pp.
140
144
,
2007
.
5.
A.-B.
Ibrahim
and
J.
Osman
, “
Intrinsic optical bistability in Kerr ferroelectric materials
,”
Eur. Phys. J. B-Condens. Matter Complex Syst.
, vol.
63
, no.
2
, pp.
193
198
,
2008
.
6.
A.-B. M.
Ibrahim
, “
On the intrinsic optical bistability of a single Kerr nonlinear dielectric layer
,”
J. Appl. Phys.
, vol.
117
, no.
18
, p.
184101
,
2015
.
7.
M. A. A.
Khushaini
and
A.-B. M.
Ibrahim
, “
On the optical bistability of ferroelectrics via two-wave mixing: Beyond the slowly varying envelope approximation
,”
Opt. Commun.
, vol.
381
, pp.
384
390
,
2016
.
8.
R. Y.
Chiao
,
T. K.
Gustafson
, and
P. L.
Kelley
, “Self-focusing of optical beams,” in
Self-Focusing: Past and Present
,
Springer
,
2009
, pp.
129
143
.
9.
P. N.
Butcher
and
D.
Cotter
,
The elements of nonlinear optics
, vol.
9
.
Cambridge university press
,
1991
.
10.
R. H.
Stolen
and
C.
Lin
, “
Self-phase-modulation in silica optical fibers
,”
Phys. Rev. A
, vol.
17
, no.
4
, p.
1448
,
1978
.
11.
L. W.
Liou
,
X. D.
Cao
,
C. J.
McKinstrie
, and
G. P.
Agrawal
, “
Spatiotemporal instabilities in dispersive nonlinear media
,”
Phys. Rev. A
, vol.
46
, no.
7
, p.
4202
,
1992
.
12.
I. C.
Littler
,
M.
Rochette
, and
B. J.
Eggleton
, “
Impact of chromatic dispersion and group delay ripple on self-phase modulation based optical regenerators
,”
Opt. Commun.
, vol.
265
, no.
1
, pp.
95
99
,
2006
.
13.
Y.
Li
and
X.
Zhang
, “
SPM of nonlinear surface plasmon waveguides
,”
Opt. Commun.
, vol.
281
, no.
19
, pp.
5009
5013
,
2008
.
14.
P.
Yeh
, “
Two-wave mixing in nonlinear media
,”
IEEE J. Quantum Electron.
, vol.
25
, no.
3
, pp.
484
519
,
1989
.
15.
G.
Zhang
,
J. T.
Stango
,
X.
Zhang
, and
C.
Xie
, “
Impact of fiber nonlinearity on PMD penalty in DWDM transmission systems
,”
IEEE Photonics Technol. Lett.
, vol.
17
, no.
2
, pp.
501
503
,
2005
.
16.
E. D.
Baraban
,
H.-Z.
Zhang
, and
R. W.
Boyd
, “
Optical bistability by two-wave mixing in photorefractive crystals
,”
JOSA B
, vol.
9
, no.
9
, pp.
1689
1692
,
1992
.
17.
R.
Ciolek
,
K.
Osuch
,
B.
Pura
,
M.
Wierzbicki
,
A.
Zagórski
, and
Z.
Wrzesiński
, “
Optical bistability in BaTiO 3
,”
Opt. Mater.
, vol.
28
, no.
12
, pp.
1341
1343
,
2006
.
18.
A. A.
Zozulya
,
K.
Baumgärtel
, and
K.
Sauer
, “
Bistability at two-wave mixing with feedback in photorefractive media
,”
Opt. Commun.
, vol.
72
, no.
6
, pp.
381
383
,
1989
.
19.
A.-B. M.
Ibrahim
and
J.
Osman
, “
Dynamics of nonlinear dielectric susceptibility of ferroelectrics near the morphotropic phase boundary
,”
Model. Simul. Mater. Sci. Eng.
, vol.
21
, no.
3
, p.
035008
,
2013
.
20.
R.
Murgan
,
D. R.
Tilley
,
Y.
Ishibashi
,
J. F.
Webb
, and
J.
Osman
, “
Calculation of nonlinear-susceptibility tensor components in ferroelectrics: cubic, tetragonal, and rhombohedral symmetries
,”
JOSA B
, vol.
19
, no.
9
, pp.
2007
2021
, Sep.
2002
.
21.
E.
Fatuzzo
and
W. J.
Merz
,
Ferroelectricity
, vol.
7
.
North-Holland Pub. Co.
,
1967
.
This content is only available via PDF.