Iron oxide nanoparticles have gained attention recently in the field of nanoscience and technology due to their unique physicochemical properties. We hereby chemically synthesized novel pentagonal flower shaped iron oxide nanoparticles by thermal decomposition of iron penta-carbonyl in a two way annealing process. Controlled oxidation by acid etching was performed for these nanoparticles. At first 13 nm core shell nanoparticles of iron oxide (Fe/Fe3O4) were synthesized at 120°C annealing temperature that act as template material. The core shell nanoparticles then converted into porous hollow core shell nanoparticles (PH Fe/ Fe3O4) in a two way annealing process of heating, first at 100°C then at 250°C and heating rate of 5°C was kept constant throughout the reaction time. X-Ray diffraction (XRD) was done for the phase confirmation of as synthesized nanoparticles. Transmission electron microscopy (TEM) and higher resolution transmission electron microscopy (HRTEM) clearly shows the flower like nanoparticles that are approx. 16 nm-18 nm in size having the 4-5 nm core of Fe and 1-2 nm of the pores in the shell while the cavity between the shell and core is about 2 nm and the shell is 4-5 nm in diameter according to the TEM micrographs. The as prepared nanoparticles were then surface functionalized by dopamine polymer to make them water dispersible. Fourier transform Infrared spectroscopy confirmed the dopamine coating on the nanoparticles and the magnetic saturation of 38 emu/g of nanoparticles was analyzed by vibrating sample magnetometer (VSM). Magnetic saturation persists in the dopamine coated nanoparticles. These nanoparticles were surface functionalized with dopamine and show dispersity in the aqueous media and can further be exploited in many nano-biotechnological applications including target specific therapeutic applications for several diseases.

1.
F.
Azzabi
,
M.
Rottmar
,
V.
Jovaisaite
,
M.
Rudin
,
T.
Sulser
,
A.
Boss
,
D.
Eberli
:
Viability, Differentiation Capacity, and Detectability of Super-Paramagnetic Iron Oxide-Labeled Muscle Precursor Cells for Magnetic-Resonance Imaging
,
Tissue Eng Part C Methods
(
2015
), pp.
182
191
2.
N.
Chan
,
M.
Laprise-Pelletier
,
P.
Chevallier
,
A.
Bianchi
,
M. A.
Fortin
,
J. K.
Oh
:
Multidentate block-copolymer-stabilized ultrasmall superparamagnetic iron oxide nanoparticles with enhanced colloidal stability for magnetic resonance imaging
,
Biomacromolecules
(
2014
), pp.
2146
2156
3.
H.
Unterweger
,
R.
Tietze
,
C.
Janko
,
J.
Zaloga
,
S.
Lyer
,
S.
Durr
,
N.
Taccardi
,
O. M.
Goudouri
,
A.
Hoppe
,
D.
Eberbeck
,
D. W.
Schubert
,
A. R.
Boccaccini
,
C.
Alexiou
:
Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery
,
Int J Nanomedicine
(
2014
), pp.
3659
3676
4.
K.
Astanina
,
Y.
Simon
,
C.
Cavelius
,
S.
Petry
,
A.
Kraegeloh
,
A. K.
Kiemer
:
Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production
,
ActaBiomater
(
2014
), pp.
4896
4911
5.
A.
Akbarzadeh
,
M.
Samiei
,
S.
Davaran
:
Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine
,
Nanoscale Res Lett
(
2012
), pp.
1
13
6.
S.
Peng
,
S.
Sun
:
Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles
,
Angew. Chem
(
2007
), pp.
4155
4158
7.
A.
Cabot
,
V. F.
Puntes
,
E.
Shevchenko
,
Y.
Yin
,
L.
Balcells
,
M. A.
Marcus
,
S. M.
Hughes
,
A. P.
Alivisatos
:
Vacancy coalescence during oxidation of iron nanoparticles
,
J Am ChemSoc
(
2007
), pp.
10358
10360
.
8.
G. H.
Jaffari
,
A.
Ceylan
,
H. P.
Bui
,
T. P.
Beebe
,
S.
 Jr 
Ozcan
,
S. I.
Shah
:
Non-equilibrium cation distribution and enhanced spin disorder in hollow CoFe2O4 nanoparticles
,
J Phys Condens Matter
(
2012
), pp.
336004
9.
L.
Colak
,
G. C.
Hadjipanayis
:
Evolution of texture and atomic order in annealed sinter-free FePt nanoparticle
,
Nanotechnology
(
2008
), pp.
235703
10.
F.
Gao
,
H.
Qu
,
Y.
Duan
,
J.
Wang
,
X.
Song
,
T.
Ji
,
L.
Cao
,
G.
Nie
,
S.
Sun
:
Dopamine coating as a general and facile route to biofunctionalization of superparamagnetic Fe3O4 nanoparticles for magnetic separation of proteins
,
RSC Adv
(
2014
), pp.
6657
6663
11.
M.
Nurunnabi
,
Z.
Khatun
,
M.
Nafiujjaman
,
D. G.
Lee
,
Y. K.
Lee
:
Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging
,
ACS Appl Mater Interfaces
(
2013
), pp.
8246
8253
.
12.
S.
Saidin
,
P.
Chevallier
,
M. R. Abdul
Kadir
,
H.
Hermawan
,
D.
Mantovani
:
Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface
,
Mater SciEng C Mater BiolAppl
(
2013
), pp.
4715
4724
13.
H.
Lee
,
S. M.
Dellatore
,
W. M.
Miller
,
P. B.
Messersmith
:
Mussel-inspired surface chemistry for multifunctional coatings
,
Science
(
2007
), pp.
426
430
14.
H.
Lee
,
B. P.
Lee
,
P. B.
Messersmith
:
A reversible wet/dry adhesive inspired by mussels and geckos
;
Nature
(
2007
), pp.
338
341
15.
K. C.
Black
,
J.
Yi
,
J. G.
Rivera
,
D. C.
Zelasko-Leon
,
P. B.
Messersmith
:
Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy
,
Nanomedicine
(
2013
), pp.
17
28
16.
L.
Yan
,
X.
Bo
,
D.
Zhu
,
L.
Guo
:
Well-dispersed Pt nanoparticles on polydopamine-coated ordered mesoporous carbons and their electrocatalytic application
,
Talanta
(
2014
), pp.
304
311
17.
Z.
Xia
,
Z.
Lin
,
Y.
Xiao
,
L.
Wang
,
J.
Zheng
,
H.
Yang
,
G.
Chen
:
Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation
,
Biosens Bioelectron
(
2013
), pp.
120
126
18.
H. L.
Shi
,
S. L.
Peng
,
J.
Sun
,
Y. M.
Liu
,
Y. T.
Zhu
,
L. S.
Qing
,
X.
Liao
:
Selective extraction of berberine from Cortex Phellodendri using polydopamine-coated magnetic nanoparticles
,
J Sep Sci
(
2014
), pp.
704
710
19.
Y. R.
Ma
,
X. L.
Zhang
,
T.
Zeng
,
D.
Cao
,
Z.
Zhou
,
W. H.
Li
,
H.
Niu
,
Y. Q.
Cai
:
Polydopamine-coated magnetic nanoparticles for enrichment and direct detection of small molecule pollutants coupled with MALDI-TOF-MS
ACS Appl Mater Interfaces
(
2013
), pp.
1024
1030
20.
C.
McCullum
,
P.
Tchounwou
,
L. S.
Ding
,
X.
Liao
,
Y. M.
Liu
:
Extraction of Aflatoxins from Liquid Foodstuff Samples with Polydopamine-Coated Superparamagnetic Nanoparticles for HPLC-MS/MS Analysis
,
J Agric Food Chem
(
2014
), pp.
4261
4267
21.
Y.
Wang
,
S.
Wang
,
H.
Niu
,
Y.
Ma
,
T.
Zeng
,
Y.
Cai
,
Z.
Meng
:
Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples
,
J Chromatogr A
(
2013
), pp.
20
26
22.
H.
Khurshid
,
W.
Li
,
V.
Tzitzios
, G. C.
Hadjipanayis: chemically synthesized hollow nanostructures in iron oxides Nanotechnology
(
2011
), pp.
265605
23.
R. J.
Xing
,
A. A.
Bhirde
,
S. J.
Wang
,
X. L.
Sun
,
G.
Liu
,
Y. L.
Hou
,
Z. Y.
Chen
:
Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles
,
Nano Res
(
2013
), pp.
1
9
24.
K.
Cheng
,
S.
Peng
,
C.
Xu
,
S.
Sun
:
Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin
,
J Am Chem Soc
(
2009
), pp.
10637
10644
25.
S.
Peng
,
C.
Wang
,
J.
Xie
,
S.
Sun
:
Synthesis and stabilization of monodisperse Fe nanoparticles
J Am Chem Soc
(
2006
), pp.
10676
10677
26.
J.
Cheon
,
N. J.
Kang
,
S. M.
Lee
,
J. H.
Lee
,
J. H.
Yoon
,
S. J.
Oh
:
Shape evolution of single-crystalline iron oxide nanocrystals
J Am ChemSoc
(
2004
), pp.
1950
1951
27.
E. V.
Shevchenko
,
M. I.
Bodnarchuk
,
M. V.
Kovalenko
,
D. V.
Talapin
,
R. K.
Smith
,
S.
Aloni
,
W.
Heiss
,
A. P.
Alivisatos
:
Gold/Iron Oxide Core/Hollow-Shell Nanoparticles
,
Adv. Mater
(
2008
), pp.
4323
4329
28.
F.
Aldinger
:
Controlled Porosity by an Extreme Kirkendall Effect
,
Acta Met
(
1974
), pp.
923
928
29.
N.
Cabrera
,
N. F.
Mott
:
Theory of the oxidation of metals
,
Rep Prog Phys
(
1949
), pp.
163
30.
S. A.
Ahadpour
,
A.
Jafari
:
Study of Structural and Magnetic Properties of Superparamagnetic Fe3O4–ZnO Core–Shell Nanoparticles
,
J Supercond Nov Magn
(
2014
), pp.
1531
1538
31.
Z. F.
Li
,
L. H.
Qiang
,
S. L.
Zhong
,
H. Y.
Wang
,
X. J.
Cui
:
Synthesis and characterization of monodisperse magnetic Fe3O4@BSA core-shell nanoparticles
,
Colloids Surf A PhysicochemEng Asp
(
2013
), pp.
1145
1151
32.
E.
Gullotti
,
J.
Park
,
Y.
Yeo
:
Polydopamine-based surface modification for the development of peritumorallyactivatable nanoparticles
,
Pharm Res
(
2013
), pp.
1956
1967
33.
R.
Mrówczyński
,
R.
Turcu
,
C.
Leostean
,
H. A.
Scheidt
,
J.
Liebscher
:
New versatile polydopamine coated functionalized magnetic nanoparticles
,
Mater Chem Phys
(
2013
), pp.
295
302
34.
J. Y.
Si
,
H.
Yang
:
Preparation and characterization of bio-compatible Fe3O4@Polydopamine spheres with core/shell nanostructure
,
Mater Chem Phys
(
2011
). Pp.
519
524
35.
X.
Liu
,
J.
Cao
,
H.
Li
,
J.
Li
,
Q.
Jin
,
K.
Ren
,
J.
Ji
:
Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo
,
ACS nano
(
2013
), pp.
9384
9395
36.
Z. H.
Li
,
Y. R.
Ma
,
L. M.
Qi
:
Controlled Synthesis of Cobalt-Doped Magnetic Iron Oxide Nanoparticle
,
Acta Phys-Chim Sin
(
2012
), pp.
2493
2499
37.
W.
Wu
,
Q.
He
,
C.
Jiang
:
Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies
Nanoscale Res Lett
(
2008
), pp
397
415
38.
A. K.
Gupta
,
M.
Gupta
:
Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications
,
Biomaterials
(
2005
), pp.
3995
4021
This content is only available via PDF.