Molybdenum disulfide (MoS2) is considered as a promising alternative to conventional semiconductor materials that used in the IC industry because of its novel properties. In this paper, we explore the optical and electronic properties of MoS2 for photodetector and transistors applications. This simulation is done using ‘DFT materials properties simulator’. Our findings show that mono- and multi-layer MoS2 is suitable for conventional and tunnel FET applications due to direct and indirect band-gap respectively. The bulk MoS2 crystal, which are composed of stacked layers have indirect bandgap and mono-layer MoS2 crystal form direct bandgap at the K-point of Brillouin zone. Indirect bandgap of bulk MoS2 crystal implies that phonons need to be involved in band-to-band tunneling (BTBT) process. Degenerately doped semiconductor, which is basically spinning the Fermi level, changing the DOS profile, and thinning the indirect bandgap that allow tunneling from valence band to conduction band. The optical properties of MoS2 is explored in terms of Absorption coefficient, extinction coefficient and refractive index. Our results shows that a MoS2 based photodetector can be fabricate to detect light in the visible range (below 500nm). It is also observed that the MoS2 is most sensitive for the light of wavelength 450nm.

1.
R. S.
Sundaram
 et al, “
Electroluminescence in single layer MoS2
,”
Nano Letters
, vol.
13
, pp.
1416
1421
,
2013
.
2.
H. S.
Lee
 et al, “
MoS2 nanosheet phototransistors with thickness-modulated optical energy gap
,”
Nano Letters
, vol.
12
, pp.
3695
3700
,
2012
.
3.
Z.
Yin
 et al, “
Single-layer MoS2 phototransistors
,”
ACS Nano
, vol.
6
, pp.
74
80
,
2011
.
4.
A.
Dashora
 et al, “
Electronic and optical properties of MoS2 thin films: feasibility for solar cells
,”
Computational Materials Science
, vol.
69
, pp.
216
221
,
2013
.
5.
K. S.
Novoselov
 et al, “
Two-dimensional atomic crystals
,”
Proceeding of the National Academy of Science of the United States of America
, vol.
102
, pp.
10451
10453
,
2005
.
6.
J.
Pu
 et al, “
Highly flexible MoS2 thin-film transistors with ion gel dielectrics
,”
Nano Letters
, vol.
12
, pp.
4013
4017
,
2012
.
7.
A.
Ayari
 et al, “
Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides
,”
Journal of Applied Physics
, vol.
101
, pp.
014505
014507
,
2007
.
8.
S.
Das
and
J.
Appenzeler
, “
Evaluating the Scalability of multilayer MoS2 Transistor
,”
71st IEEE Annual Device Research Conference
, pp.
153
154
,
2013
.
9.
G.
Eda
 et al, “
Photoluminescence from Chemically Exfoliated MoS2
,”
Nano Letters
, vol.
11
, pp.
5111
5116
,
2011
.
10.
T.
Spalvins
, “
A review of recent advances in solid film lubrication
,”
Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films
, vol.
5
, pp.
212
219
,
1987
.
11.
Y. H.
Lee
 et al, “
Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition
,”
Advanced Materials
, vol.
24
, no.
17
, pp.
2320
2325
,
2012
.
12.
Y.
Zhan
 et al, “
Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate
,”
Small
, vol.
8
, pp.
966
971
,
2012
.
13.
R. R.
Nair
 et al, “
Fluorographene: a two-dimensional counterpart of Teflon
,”
Small
, vol.
6
, no.
24
, pp.
2877
2884
,
2010
.
14.
A. M.
Goldberg
 et al, “
The low-energy absorption edge in 2H-MoS2 and 2H-MoSe2
,”
Philosophical Magazine
, vol.
32
, no.
2
, pp.
367
378
, August
1975
.
15.
A.
Splendiani
 et al, “
Emerging Photoluminescence in monolayer MoS2
,”
Nano Letters
, vol.
10
, pp.
1271
1275
,
2010
.
16.
K. F.
Mak
 et al, “
Atomically thin MoS2: a new direct-gap semiconductor
,”
Physical Review Letters
, vol.
105
, pp.
136805-1
136805-4
,
2010
.
17.
B.
Radisavljevic
 et al, “
Single-layer MoS2 transistors
,”
Nature Nano
, vol.
6
, pp.
147
150
,
2011
.
18.
M.
Sanaullah
and
M.
Chowdhury
, “Multilayer Molybdenum disulphide based Tunnel Transistor,”
IEEE International Symposium on Circuits and Systems
,
Lisbon, Portugal
, pp.
1929
1932
, 24-27 May
2015
.
19.
A.
Splendiani
 et al, “
Emerging photoluminescence in monolayer MoS2
,”
Nano Letters
, vol.
10
, pp.
1271
1275
,
2010
.
20.
S.
Kim
 et al, “
High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals
,”
Nature Communications
, vol.
3
,
2012
.
21.
M.
Perera
 et al “
Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating
,”
ACS Nano
vol.
7
, pp.
4449
4458
,
2013
.
22.
R. K.
Ghosh
and
S.
Mahapatra
, “
Monolayer transition metal dichalcogenide channel based tunnel transistor
,”
IEEE Journal of the Electron Devices Society
, vol.
1
, no.
10
, October
2013
.
23.
S.
Ghatak
 et al, “
Nature of electronic states in atomically thin MoS2 field-effect transistors
,”
ACS Nano
, vol.
5
, pp.
7707
7712
,
2011
.
24.
B.
Radisavljevic
, and
A.
Kis
, “
Mobility engineering and a metal–insulator transition in monolayer MoS2
,”
Nat. Mater.
, vol.
12
, pp.
815
820
,
2013
.
25.
W.
Bao
 et al, “
High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects
,”
Appl. Phys. Lett.
, vol.
102
, no.
042104
,
2013
.
26.
D.
Jariwala
 et al, “
Band-like transport in high mobility unencapsulated single layer MoS2 transistors
,”
Appl. Phys. Lett.
, vol.
102
, no.
173107
,
2013
.
27.
S. L.
Li
 et al, “
Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors
,”
Nano. Lett.
, vol.
13
, pp.
3546
3552
,
2013
.
28.
M.
Sanaullah
and
Masud H
Chowdhury
, “Subthreshold Swing Characteristics of Multilayer MoS2Tunnel FET,”
IEEE 58th International Midwest Symposium on Circuits and Systems
,
Fort Collins, Colorado
, pp.
1
4
, 2-5 August
2015
.
29.
N. R.
Pradhan
 et al, “
Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2
,”
Appl. Phys. Lett.
, vol.
102
, pp.
123105
,
2013
.
30.
Y.
Zhang
 et al, “
MoS2 thin flake transistors
,”
Nano Lett.
vol.
12
, pp.
1136
1140
,
2012
.
31.
G.
Eda
, et al, “
Photoluminescence from chemically exfoliated MoS2
,”
Nano Letters
, vol.
11
, pp.
5111
5116
,
2011
.
32.
E. S.
Kadantsev
and
P.
Hawrylak
, “
Electronic structure of a single MoS2 monolayer
,”
Solid State Communications
, vol.
152
, pp.
909
913
, May
2012
.
33.
K.
Kaasbjerg
 et al, “
Phonon-limited mobility in n-type single-layer MoS2 from first principles
,”
Physical Review B
, vol.
85
, no.
11
, pp.
115317-1
115317-16
,
2012
.
34.
U.
Kamran
 et al, “
DFT Material Properties Simulator
,” https://nanohub.org/resources/dftmatprop.
35.
C. A.
Draxl
,
J. O.
Sofo
, “
Linear optical properties of solids within the full-potential linearized augmented planewave method
,”
Computer Physics Communications
, vol.
175
, no.
1
, pp.
1
14
,
2006
.
36.
H.
Zimmerman
,
Basics of Optical Emission and Absorption”, in Integrated Silicon Optoelectronics
, 2nd ed.,
Springer
,
2010
, ch. 1, pp.
4
6
.
37.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
, vol.
23
, May
1981
.
This content is only available via PDF.