This paper uses optical whispering galley modes (WGM) cavities to construct a new electrical sensing interface between prosthetic limb and the brain. The sensing element will detect the action potential signal in the neural membrane and the prosthetic limb will be actuated accordingly. The element is a WGM dielectric polymeric cavity. WGM based optical cavities can achieve very high values of sensitivity and quality factor; thus, any minute perturbations in the morphology of the cavity can be captured and measured. The action potential signal will produce an applied external electric field on the dielectric cavity causing it to deform due to the electrostriction effect. The resulting deformation will cause WGM shifts in the transmission spectrum of the cavity. Thus, the action potential or the applied electric field can be measured using these shifts. In this paper the action potential signal will be simulated through the use of a function generator and two metal electrodes. The sensing element will be situated between these electrodes to detect the electrical signal passing through. The achieved sensitivity is 27.5 pm/V in measuring the simulated action potential signal; and 0.32 pm/V.m-1 in measuring the applied electric field due to the passage of the simulated signal.

1.
B. N.
Routh
,
R. K.
Rathour
,
M. E.
Baumgardner
,
E. K.
Brian
,
D.
Johnston
,
D. H.
Brager
,
The J. of Physio.
,
595
,
4431
4448
(
2017
).
2.
C. M.
McClaskey
,
J. R.
Dubno
,
K. C.
Harris
,
The J. of the Aco. Soc. of Amer.
,
141
,
3901
3901
(
2017
).
3.
V.
Glaser
,
A.
Holobar
,
Springer International Publishing
(
Clin. and Eng. Res. on Neurorehabilitation II
,
Segovia, Spain
,
2017
).
4.
M. L.
Gorodetsky
,
A. A.
Savchenkov
,
V. S.
Ilchenko
,
Opt. Lett.
,
21
,
453
455
(
1996
).
5.
G.
Guan
,
S.
Arnold
,
V. M.
Ötügen
,
AIAA J.
,
44
,
9
(
2006
).
6.
T.
Carmon
,
L.
Yang
,
K. J.
Vahala
,
Opt. Express
,
12
,
4742
4750
(
2004
).
7.
A.R.
Ali
,
T.
Ioppolo
,
V. M.
Ötügen
,
Proc. SPIE 8600 (Laser Resonators, Microresonators, and Beam Control XV, San Fransesco
) (
2013
).
8.
A. R.
Ali
,
T.
Ioppolo
,
V. M.
Ötügen
,
IEEE xplore
(
ICET
,
Cairo
,
2012
).
9.
A. R.
Ali
and
M. A.
Kamel
,
Proc. SPIE 10231
(
SPIE Opt. and Optoelec.
,
Prague
,
2017
).
10.
T.
Ioppolo
,
V.
Ötügen
,
U.
Ayaz
,
J. Vis. Exp
,
71
, no.
e50199
(
2013
).
11.
A.R.
Ali
,
M. A.
Kamel
,
J. Math. Prob. in Eng.
, Article ID 9649524 (
2017
).
12.
A. R.
Ali
,
The Scien. Pag. of Opt. and Photon.
,
1
,
7
15
(
2017
).
13.
F.
Vollmer
and
S.
Arnold
,
Nat. Meth.
,
5
,
591
596
(
2008
).
14.
L.
He
,
Ş. K.
Özdemir
,
J.
Zhu
,
W.
Kim
and
L.
Yang
,
Nat. Photon.
,
6
,
428
432
(
2011
).
15.
F.
Vollmer
,
S.
Arnold
,
D.
Braun
,
I.
Teraoka
,
A.
Libchaber
,
Biophys.J.
,
85
,
1974
1979
(
2003
).
16.
S.
Arnold
and
S.
Shopova
,
Biophotonics:Spectroscopy, Imaging, Sensing, and Manipulation
,
Dordrecht
, (
2011
).
17.
K.
Schult
,
A.
Katerkamp
,
D.
Trau
,
F.
Grawe
,
K.
Cammann
,
M.
Meusel
,
J. Anal. Chem.
,
71
,
5430
5435
(
1999
).
18.
J. A.
Stratton
,
Electromagnetic Theory
(
Mcgraw-Hill Book Company
,
New York
,
1941
).
19.
R. W.
Soutas-Little
,
Elasticity
(
Dover publications
,
NewYork
,
1999
).
20.
A. R.
Ali
,
T.
Ioppolo
,
V. M.
Otugen
,
M.
Christensen
,
D.
MacFarlan
,
J. Pol. Phys.
,
52
,
276
279
(
2013
).
This content is only available via PDF.