The spectral element method is used to perform a parametric sensitivity study of the nonlinear coda wave interferometry (NCWI) method in a homogeneous sample with localized damage [1]. The influence of a strong pump wave on a localized nonlinear damage zone is modeled as modifications to the elastic properties of an effective damage zone (EDZ), depending on the pump wave amplitude. The local change of the elastic modulus and the attenuation coefficient have been shown to vary linearly with respect to the excitation amplitude of the pump wave as in previous experimental studies of Zhang et al. [2]. In this study, the boundary conditions of the cracks, i.e. clapping effects is taken into account in the modeling of the damaged zone. The EDZ is then modeled with random cracks of random orientations, new parametric studies are established to model the pump wave influence with two new parameters: the change of the crack length and the crack density. The numerical results reported constitute another step towards quantification and forecasting of the nonlinear acoustic response of a cracked material, which proves to be necessary for quantitative non-destructive evaluation.

1.
G.
Chen
,
D.
Pageot
,
J.-B.
Legland
,
O.
Abraham
,
M.
Chekroun
and
V.
Tournat
, “
Numerical modeling of ultrasonic coda wave interferometry in a multiple scattering medium with a localized nonlinear defect
”,
Wave Motion
, vol.
72
, pp.
228
243
,
2017
.
2.
Y.
Zhang
,
V.
Tournat
,
O.
Abraham
,
A.
Le Duff
,
B.
Lascoup
,
O.
Durand
, “
Nonlinear mixing of ultrasonic coda waves with lower frequency-swept pump waves for a global detection of defects in multiple scattering media
”,
J. Appl. Phys.
, vol.
113
, pp.
064905
,
2013
.
3.
R. A.
Guyer
,
P. A.
Johnson
, “
Nonlinear mesoscopic elasticity: Evidence for a new class of materials
”,
Phys. Today
, vol.
52
, pp.
30
36
,
1999
.
4.
J. A.
TenCate
, “
Slow dynamics of earth materials: An example overview
”,
Pure Appl. Geophys.
, vol.
168
, pp.
2211
2219
,
2011
.
5.
P.
Blanloeuil
,
A.
Meziane
,
A. N.
Norris
,
C.
Bacon
, “
Analytical extension of finite element solution for computing the nonlinear far field of ultrasonic waves scattered by a closed crack
”,
Wave Motion
, vol.
66
, pp.
132
146
,
2016
.
6.
D.
Donskoy
,
A.
Sutin
,
A.
Ekimov
, “
Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing
”,
NDT & E Int.
, vol.
34
, pp.
231
238
,
2001
.
7.
J. -Y.
Kim
,
L. J.
Jacobs
,
J.
Qu
,
J. W.
Littles
, “
Experimental characterization of fatigue damage in a nickel-base super-alloy using nonlinear ultrasonic waves
”,
J. Acoust. Soc. Am.x
, vol.
120
, pp.
1266
1273
,
2006
.
8.
K.
Van Den Abeele
,
P. A.
Johnson
,
A.
Sutin
, “
Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS
)”,
Res. Nondestr. Eval.
, vol.
12
, pp.
17
30
,
2000
.
9.
P. A.
Johnson
,
A.
Sutin
, “
Slow dynamics and anomalous nonlinear fast dynamics in diverse solids
”,
J. Acoust. Soc. Am.
, vol.
117
, pp.
124
,
2005
.
10.
B.
Hilloulin
,
Y.
Zhang
,
O.
Abraham
,
A.
Loukili
,
F.
Grondin
,
O.
Durand
,
V.
Tournat
, “
Small crack detection in cementitious materials using nonlinear coda wave modulation
”,
NDT & E Int.
, vol.
68
, pp.
98
104
,
2014
.
11.
G.
Renaud
,
J.
Riviere
,
S.
Haupert
,
P.
Laugier
, “
Anisotropy of dynamic acoustoelasticity in limestone, influence of conditioning, and comparison with nonlinear resonance spectroscopy
”,
J. Acoust. Soc. Am.
, vol.
133
, pp.
3706
3718
,
2013
.
12.
J. N.
Eiras
,
Q. A.
Vu
,
M.
Lott
,
J.
Paya
,
V.
Garnier
,
C.
Payan
, “
Dynamic acoustoelastic test using continuous probe wave and transient vibration to investigate material nonlinearity
”,
Ultrasonics
, vol.
69
, pp.
29
37
,
2016
.
13.
G.
Poupinet
,
W.
Ellsworth
,
J.
Frechet
, “
Monitoring velocity variations in the crust using earthquake doublets : an application to the calaveras fault, california
”,
J. Geophys. Res.
, vol.
89
, p.
5719
5731
,
1984
.
14.
R.
Snieder
,
A
Gret
,
H.
Douma
,
J.
Scales
, “
Coda wave interferometry for estimating nonlinear behavior in seismic velocity
”,
Science
, vol.
295
, pp.
2253
2255
,
2002
.
15.
Y.
Zhang
,
O.
Abraham
,
F.
Grondin
,
A.
Loukili
,
V.
Tournat
,
A. L.
Duff
,
B.
Lascoup
,
O.
Durand
, “
Study of stress-induced velocity variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated coda wave interferometry
”,
Ultrasonics
, vol.
52
, pp.
1038
1045
,
2012
.
16.
E.
Larose
,
S.
Hall
, “
Monitoring stress related velocity variation in concrete with a 2*10-5 relative resolution using diffuse ultrasound
”,
J. Acoust. Soc. Am.
, vol.
125
, pp.
1853
1856
,
2009
.
17.
Y.
Zhang
,
T.
Planes
,
E.
Larose
,
A.
Obermann
,
C.
Rospars
,
G.
Moreau
, “
Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam
”,
J. Acoust. Soc. Am.
, vol.
139
, pp.
1691
1701
,
2016
.
18.
D.
Komatitsch
,
J. P.
Vilotte
, “
The spectral element method: an effective tool to simulate the seismic response of 2D and 3D geological structures
”,
B. Seismol. Soc. Am.
, vol.
88
, pp.
5961
5972
,
1998
.
19.
G. M.
Mavko
,
A.
Nur
, “
Effect of non-elliptical cracks on compressibility of rocks
”,
J. Geophys. Res.
, vol.
83
, pp.
4459
4468
,
1978
.
This content is only available via PDF.