Modern aerospace industry is migrating from reactive to proactive and predictive maintenance to increase platform operational availability and efficiency, extend its useful life cycle and reduce its life cycle cost. Multiphysics modeling together with data-driven analytics generate a new paradigm called “Digital Twin.” The digital twin is actually a living model of the physical asset or system, which continually adapts to operational changes based on the collected online data and information, and can forecast the future of the corresponding physical counterpart. This paper reviews the overall framework to develop a digital twin coupled with the industrial Internet of Things technology to advance aerospace platforms autonomy. Data fusion techniques particularly play a significant role in the digital twin framework. The flow of information from raw data to high-level decision making is propelled by sensor-to-sensor, sensor-to-model, and model-to-model fusion. This paper further discusses and identifies the role of data fusion in the digital twin framework for aircraft predictive maintenance.

1.
S.
Sanghavi
,
Aircraft Maintenance Technology
, 10–11 August-September (
2016
).
2.
Predictive maintenance benefits for the airline industry
,” (
2014
), last access in March 2017.
3.
E. J.
Tuegel
,
A. R.
Ingraffea
,
T. G.
Eason
, and
S. M.
Spottswood
,
International Journal of Aerospace Engineering
,
2011
, article ID 154798,
14
pp. (
2011
).
4.
E. H.
Glaessgen
and
D. S.
Stargel
, “
The digital twin paradigm for future NASA and U.S. air force vehicles
,”
53rd Structures, Structural Dynamics, and Materials Conference
, pp
1
14
,
Honolulu, Hawaii
, (
2012
).
5.
M.-T.
Schmidt
,
ANSYS Advantage
,
XI
,
43
45
, (
2017
).
6.
J.
Kelly
,
Big data in the aviation industry, WIKIBON (2013)
, retrieved in August
2017
.
7.
X. E.
Gros
,
NDT Data Fusion
,
Arnold
, (
1997
).
8.
X. E.
Gros
,
Applications of NDT Data Fusion
,
Kluwer Academic Publishers
, (
2001
).
9.
Z.
Liu
,
D. S.
Forsyth
,
J. P.
Komorroski
,
K.
Hanasaki
, and
K.
Kiruba
,
IEEE Transactions on Instrumentation and Measurement
,
56
,
2435
2451
, December (
2007
).
10.
D. L.
Hall
and
J.
Llinas
, “Handbook of multisensor data fusion: Theory and practice,” (
CRC Press, Boca Raton
,
Florida, USA
, 2009) Chap. Multisensor Data Fusion, 2nd ed., pp
1
14
, (
2009
).
11.
H.
Bostrom
,
S. F.
Andler
,
M.
Brohede
,
R.
Johansson
,
E.
Karlsson
,
J. V.
Laere
,
L.
Niklasson
,
M.
Nilsson
,
A.
Persson
, and
T.
Ziemke
, “
On the definition of information fusion as a field of research
,”
Univ. Skovde, Sweeden, Tech. Rep. HS-IKI-TR-07-006
(
2007
).
12.
Z.
Liu
and
N.
Mrad
, “
Data fusion for the diagnostics, prognostics, and health management of aircraft systems
,” in
Proceedings of the First International Conference on Cognitive Systems and Information Processing: Foundations and Practical Applications of Cognitive Systems and Information Processing
,
Advances in Intelligent Systems and Computing
, edited by
F.
Sun
,
D.
Hu
, and
H.
Liu
,
Beijing, China
, (
2012
).
13.
M.
Iorga
,
L.
Feldman
,
R.
Barton
,
M. J.
Martin
,
N.
Goren
, and
C.
Mahmoudi
, “The NIST definition of fog computing,”
NIST Special Publication
800
191
(
National Institute of Standards and Technology
, (
2017
).
14.
X.
Fang
,
K.
Paynabar
, and
N.
Gebraeel
,
Reliability Engineering & System Safety
,
159
,
322
331
, (
2017
).
15.
I. K.
Kenneth
J.
Hintz
, “
An integrated model of hard and soft context in sensor management
,” (
2016
).
16.
D.
Leake
,
A.
Maguitman
, and
T.
Reichherzer
, “
Experience-Base Support for Human – Centered Knowledge Modeling
”,
Knowledge-Based Systems
,
68
,
77
87
, (
2014
).
17.
G.
Medina-Oliva
,
A.
Voisin
,
M.
Monnin
, and
J.B.
Leger
, “
Predictive Diagnosis Based on – Fleet-Wide Ontology Approach
”,
Knowledge-Based Systems
.
68
,
40
57
, (
2014
).
18.
Q.
Zhou
,
P.
Yan
, and
Y.
Xin
,
Advanced Engineering Informatics
,
32
,
92
112
, (
2017
).
19.
D. L.
McGuinness
, “
Ontologies for information fusion
,”
Proc. Sixth International Conference of Information Fusion, 2003.
Vol.
1
,
650
657
, (
2003
).
20.
E.
Blasch
, “
Importance of semantic ontologies in information fusion
,” in
The 11th International Conference on Semantic Technology for Intelligence, Defense, and Security
,
Fairfax, Virginia
, (
2016
).
21.
R. N.
Wurzhach
, “
A web-based cost benefit analysis method for predictive maintenance
,”
Proceedings of Inframation 2000, the Thermographer’s Conference
,
Infrared Training Center
, (
2000
).
22.
Y.
Li
,
L.
Chun
, and
A. N. Y.
Ching
, “
An agent-based platform for web-enabled equipment predictive maintenance
,” in
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
, pp.
132
135
, (
2005
).
23.
Z.
Zhou
, Ensemble Methods: Foundations and Algorithms, edited by
R.
Herbrich
and
T.
Graepel
,
Machine learning and pattern recognition series
,
CRC Press
, (
2012
).
24.
S.
Al-Dahidi
,
F. D.
Maio
,
P.
Baraldi
, and
E.
Zio
, “
Remaining Useful Life Estimation in Heterogeneous Fleets Working Under Variable Working Conditions
”,
Reliability Engineering & System Safety
,
156
,
109
124
, (
2016
).
25.
R.
Jaai
and
M.
Pecht
, “
Fusion prognostics
,”
Proceedings, AIAC-13 Thirteenth Australian International Aerospace Congress
, (
2009
).
26.
Librestream
, http://librestream.com/, (
2017
).
27.
Amotus Solutions
, http://www.amotus-solutions.com/, (
2017
).
28.
Creaform
, https://www.creaform3d.com, (
2017
).
This content is only available via PDF.