The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.

1.
M.
Aifaa
,
Fault diagnosis in power plant using artificial neural network
,
Universiti Teknologi Malaysia
,
Johor
,
2008
.
2.
Y. K.
Hung
,
Fault identification in power distribution system using fuzzy logic
,
Universiti Teknologi Malaysia
,
Johor
,
2009
.
3.
N. A. M.
Isa
,
F. R.
Hashim
,
F. W.
Mei
,
D. A.
Ramli
,
W. M. W.
Omar
and
K. Z.
Zamli
, “
Predicting quality of river’s water based on algae composition using artificial neural network
,” in
IEEE International Conference on Industrial Informatics
(
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
,
2006
), pp.
1340
1345
.
4.
E. B. M.
Tayeb
,
American Journal of Engineering Research
2
,
69
75
(
2013
).
5.
P.
Manke
and
S.
Tembhurne
,
International Journal of Computer Science
9
,
520
256
(
2012
).
6.
D. A.
Ramli
,
J. M
Saleh
,
F. R.
Hashim
and
N. A. Mat
Isa
, “
Multilayered perceptron (MLP) network trained by recursive least squares algorithm
,”
Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering, 2005. CCSP 2005. 1st International Conference on
, pp.
288
291
,
2005
.
7.
M. F.
Ismail
, “Toolbox for power system fault analysis using MATLAB,”
Universiti Malaysia Pahang
,
2011
.
8.
F. R.
Hashim
,
J. J.
Soraghan
and
L.
Petropaulakis
, “
Multi-Classify Hybrid Multiyared Perceptron (HMLP) Network for Pattern Recognition Applications
,”
Artificial Intelligence Applications and Innovations
,
381
, pp.
19
27
,
2012
.
9.
J.
Adnan
,
N. G. N.
Daud
,
A. S. N.
Mokhtar
,
F. R.
Hashim
,
S.
Ahmad
,
A. F.
Rashidi
and
Z. I.
Rizman
,
Journal of Fundamental and Applied Sciences
9
,
417
432
(
2017
).
10.
I. M.
Yassin
I,
R.
Jailani
,
M.
Ali
,
M. S.
Amin
,
R.
Baharom
,
A.
Hassan
,
A.
Huzaifah
and
Z. I.
Rizman
,
International Journal on Advanced Science, Engineering and Information Technology
7
,
215
221
(
2017
).
11.
B.
Nawi
,
B.
Sulaini
,
Z. A. R.
Mohd
,
A. Z.
Shamsul
and
I. R.
Zairi
,
Journal of Applied Environmental and Biological Sciences
5
,
166
173
(
2015
).
12.
M. F. A.
Latip
,
M. K. A. M.
Udin
,
M. M.
Othman
,
I. M.
Yassin
,
Z. I.
Rizman
,
N.
Zaini
,
M. N.
Hidayat
,
N.
Aminuddin
,
S. H.
Herman
,
H.
Saad
and
M. H. F.
Rahiman
,
International Journal of Advanced and Applied Sciences
4
,
159
163
(
2017
).
13.
A.
Zabidi
,
I. M.
Yassin
,
H. A.
Hassan
,
N.
Ismail
,
M. M. A. M.
Hamzah
and
Z. I.
Rizman
,
Journal of Fundamental and Applied Sciences
9
,
768
778
(
2017
).
14.
F. R.
Hashim
,
N. G. N.
Daud
,
K. A.
Ahmad
,
J.
Adnan
and
Z. I.
Rizman
,
Journal of Fundamental and Applied Sciences
9
,
493
502
(
2017
).
15.
F. R.
Hashim
,
J.
Adnan
,
M. M.
Ibrahim
,
M. T.
Ishak
,
M. F. M.
Din
,
N. G. N.
Daud
and
Z. I.
Rizman
,
Journal of Fundamental and Applied Sciences
9
,
1
10
(
2017
).
16.
I. M.
Yassin
,
A.
Zabidi
,
R.
Jailani
,
M. S. A. M.
Ali
,
R.
Baharom
,
A. H. A.
Hassan
and
Z. I.
Rizman
,
International Journal on Advanced Science, Engineering and Information Technology
7
,
215
221
(
2017
).
17.
F. D. M.
Fauzi
,
T.
Mulyana
,
Z. I.
Rizman
,
M. T.
Miskon
,
W. A. K. W.
Chek
and
M. H.
Jusoh
,
International Journal on Advanced Science, Engineering and Information Technology
6
,
489
494
(
2016
).
18.
M. T.
Miskon
,
Z. I.
Rizman
,
W. A. K. W.
Chek
and
F. D. M.
Fauzi
,
Journal of Applied Environmental and Biological Sciences
4
,
108
114
(
2014
).
This content is only available via PDF.