Cardiac abnormality often occurs regardless of gender, age and races but depends on the lifestyle. This problem sometimes does not show any symptoms and usually detected once it already critical which lead to a sudden death to the patient. Basically, cardiac abnormality is the irregular electrical signal that generate by the pacemaker of the heart. This paper attempts to develop a program that can detect cardiac abnormality activity through implementation of Hybrid Multilayer Perceptron (HMLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP and HMLP network by using Modified Recursive Prediction Error (MRPE) algorithm and to test the network performance.

2.
Texas Heart Institute
,
Heart anatomy
,
Texas Heart Institute
,
Houston
,
2016
3.
National Heart Foundation of Australia
, The heart foundation, National Heart Foundation of Australia, Sydney,
2009
.
4.
J. R.
Hampton
,
The ECG Made Easy
(
International Edition: Churchill Livingstone Elsevier
,
London
,
2013
).
5.
L. R.
Barker
,
J. R.
Burton
and
P. D.
Zieve
,
Principles of Ambulatory Medicine
(
Lippinocott, Wilkins and Williams
,
Philadelphia
,
2003
).
6.
M.
Cadogan
,
U wave, Life in the Fast Lane
,
2016
, http://lifeinthefastlane.com/ecg-library/basics/u-wave/.
7.
N. A. Mat
Isa
,
F. R.
Hashim
,
F. W.
Mei
,
D. A.
Ramli
,
W. M. Wan
Omar
and
K. Z.
Zambli
, “
Predicting quality of river’s water based on algae composition using artificial neural network
,” in
4th IEEE International Conference on Industrial Informatics
(
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
,
2006
), pp.
1340
1345
.
8.
D. A.
Ramli
,
J. M.
Saleh
,
F. R.
Hashim
and
N. A. Mat
Isa
, “
Multilayered perceptron (MLP) network trained by recursive least squares algorithm
,” in
1st International Conference on Computers, Communications, and Signal Processing with Special Track on Biomedical Engineering
(
2005
), pp.
288
291
.
9.
F. R.
Hashim
,
J. J.
Soraghan
and
L.
Petropaulakis
,
Artificial Intelligence Applications and Innovations
381
,
19
27
(
2012
).
10.
F. R.
Hashim
,
N. G. Nik
Daud
,
A. S. N.
Mokhtar
,
A. F.
Rashidi
and
K. A.
Ahmad
,
Indian Journal of Science and Technology
10
,
1
5
(
2017
).
11.
F. R.
Hashim
,
J.
Adnan
,
N. G. N.
Daud
,
A. S. N.
Mokhtar
,
A. F.
Rashidi
and
Z. I.
Rizman
,
Journal of Fundamental and Applied Sciences
9
,
131
140
(
2017
).
12.
J.
Adnan
,
N. G. N.
Daud
,
A. S. N.
Mokhtar
,
F. R.
Hashim
,
S.
Ahmad
,
A. F.
Rashidi
and
Z. I.
Rizman
,
Journal of Fundamental and Applied Sciences
9
,
417
432
(
2017
).
13.
I. M.
Yassin
I,
R.
Jailani
,
M.
Ali
,
M. S.
Amin
,
R.
Baharom
,
A.
Hassan
,
A.
Huzaifah
and
Z. I.
Rizman
,
International Journal on Advanced Science, Engineering and Information Technology
7
,
215
221
(
2017
).
14.
A.
Zabidi
,
I. M.
Yassin
,
H. A.
Hassan
,
N.
Ismail
,
M. M. A. M.
Hamzah
and
Z. I.
Rizman
,
Journal of Fundamental and Applied Sciences
9
,
768
778
(
2017
).
This content is only available via PDF.