Molecular recognition via protein–ligand interactions is of fundamental importance to numerous processes in living organisms. Microscale thermophoresis (MST) uses the sensitivity of the thermophoretic response upon ligand binding to access information on the reaction kinetics. Additionally, thermophoresis is promising as a tool to gain information on the hydration layer, as the temperature dependence of the thermodiffusion behaviour is sensitive to solute-solvent interactions. To quantify the influence of structural fluctuations and conformational motion of the protein on the entropy change of its hydration layer upon ligand binding, we combine quasi-elastic incoherent neutron scattering (QENS) and isothermal titration calorimetry (ITC) data from literature. However, preliminary results show that replacing water with deuterated water leads to changes of the thermophoretic measurements, which are similar to the changes observed upon binding by biotin. In order to gain a better understanding of the hydration layer all measurements need to be performed in heavy water. This will open a route to develop a microscopic understanding of the correlation between the strength and number of hydrogen bonds and the thermophoretic behaviour.

1.
S.
Wiegand
, “Introduction to thermal gradient related effects,” in
Functional Soft Matter
, edited by
J.
Dhont
,
G.
Gompper
,
G.
Meier
,
D.
Richter
,
G.
Vliegenthart
, and
R.
Zorn
(
Forschungszentrum Jülich
,
Jülich
,
2015
), pp.
F4.1
F4.24
.
2.
M.
Jerabek-Willemsen
,
T.
Andr
,
W.
Wanner
,
H.
Roth
,
S.
Duhr
,
P.
Baaske
, and
D.
Breitsprecher
,
J. Mol. Struct.
1077
,
101
113
(
2014
).
3.
Y.
Kishikawa
,
S.
Wiegand
, and
R.
Kita
,
Biomacromolecules
11
,
740
747
(
2010
).
4.
S.
Iacopini
,
R.
Rusconi
, and
R.
Piazza
,
Eur. Phys. J. E
19
,
59
67
(
2006
).
5.
D.
Niether
,
T.
Kawaguchi
,
J.
Hovancova
,
K.
Eguchi
,
J. K. G.
Dhont
,
R.
Kita
, and
S.
Wiegand
,
Langmuir
33
,
8483
8492
(
2017
).
6.
C. A.
Lipinski
,
F.
Lombardo
,
B. W.
Dominy
, and
P. J.
Feeney
,
Adv. Drug Delivery Rev.
64
,
4
17
(
2012
).
7.
W. L.
Jorgensen
,
Accounts of Chemical Research
22
,
184
189
(
1989
).
8.
T. C.
Kuo
,
C. W.
Tsai
,
P. C.
Lee
, and
W. Y.
Chen
,
Journal of Molecular Recognition
28
,
125
128
(
2015
).
9.
M.
Bee
,
Quasielastic neutron scattering: Principles and applications in solid state chemistry, biology and materials science
(
Hilger
,
Bristol
,
1988
).
10.
F.
Gabel
,
D.
Bicout
,
U.
Lehnert
,
M.
Tehei
,
M.
Weik
, and
G.
Zaccai
,
Q. Rev. Biophys.
35
,
327
367
(
2002
).
11.
J.
Fitter
,
J.
Katsaras
, and
T.
Gutberlet
,
Neutron Scattering in Biology: [E-Book] : Techniques and Applications
(
Springer-Verlag
,
Berlin, Heidelberg
,
2006
).
12.
A.
Stadler
,
M.
Koza
, and
J.
Fitter
,
The journal of physical chemistry B
119
,
72
82
(
2015
).
13.
S.
Wiegand
and
W.
Köhler
,
LNP Vol. 584: Thermal Nonequilibrium Phenomena in Fluid Mixtures
584
,
189
210
(
2002
).
14.
P.
Blanco
,
H.
Kriegs
,
M. P.
Lettinga
,
P.
Holmqvist
, and
S.
Wiegand
,
Biomacromolecules
12
,
1602
1609
(
2011
).
15.
J.
Wuttke
,
A.
Budwig
,
M.
Drochner
,
H.
Kmmerling
,
F.-J.
Kayser
,
H.
Kleines
,
V.
Ossovyi
,
L. C.
Pardo
,
M.
Prager
,
D.
Richter
,
G. J.
Schneider
,
H.
Schneider
, and
S.
Staringer
,
Rev. Sci. Instrum.
83
, p.
75109
(
2012
).
16.
MLZ
et al.,
J. large-scale Res. Facil.
1
, p.
A30
(
2015
).
17.
A. E.
Kamholz
,
E. A.
Schilling
, and
P.
Yager
,
Biophysical Journal
80
,
1967
1972
(
2001
).
18.
S.
Liese
,
M.
Gensler
,
S.
Krysiak
,
R.
Schwarzl
,
A.
Achazi
,
B.
Paulus
,
T.
Hugel
,
J. P.
Rabe
, and
R. R.
Netz
,
ACS Nano
11
,
702
712
(
2017
).
19.
R.
Sugaya
,
B. A.
Wolf
, and
R.
Kita
,
Biomacromolecules
7
,
435
440
(
2006
).
20.
K.
Eguchi
,
D.
Niether
,
S.
Wiegand
, and
R.
Kita
,
The European Physical Journal E
39
, p.
86
(
2016
).
This content is only available via PDF.