In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a “one-way” coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the “system tunnel”, composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a “one way” strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is considered sufficiently accurate in this first phase of the research.

1.
D.
Gawin
,
F.
Pesavento
,
B.A.
Schrefler
,
Int. J. Numer. Anal. Meth. in Geomech.
26
(
6
),
537
562
(
2002
).
2.
D.
Gawin
.
F.
Pesavento
,
B.A.
Schrefler
,
Comput. Methods Appl. Mech. Engrg.
192
(
13-14
),
1731
1771
(
2003
).
3.
D.
Gawin
,
F.
Pesavento
,
B.A.
Schrefler
,
Mater. Struct.
37
(
268
),
218
236
(
2004
).
4.
D.
Gawin
,
F.
Pesavento
,
B.A.
Schrefler
,
Comput. Methods Appl. Mech. Engrg.
195
,
5707
5729
(
2006
).
5.
D.
Gawin
,
F.
Pesavento
,
B. A.
Schrefler
,
Int. J. Solids Struct.
84
(
13
),
1927
1944
(
2011
).
6.
D.
Gawin
,
F.
Pesavento
,
B. A.
Schrefler
,
Int. J. Solids Struct.
48
(
13
),
1945
1961
(
2011
).
7.
D.
Gawin
,
F.
Pesavento
,
Fire Technology
48
,
753
793
(
2012
).
8.
B. A.
Schrefler
,
P.
Brunello
,
D.
Gawin
,
C.E.
Majorana
,
F.
Pesavento
,
Comput. Mech.
29
(
1
),
43
51
(
2002
).
9.
M.
Zeiml
,
R.
Lackner
,
F.
Pesavento
,
B.A.
Schrefler
,
Fire Safety J
43
(
2
),
83
95
(
2008
).
10.
B. A.
Schrefler
,
R.
Codina
,
F.
Pesavento
,
J.
Principe
,
Int. J. Num. Meth. Engng
87
(
1-5
),
361
385
(
2011
).
11.
A.
Witek
,
D.
Gawin
,
F.
Pesavento
,
B. A.
Schrefler
,
Comput. Mech.
39
(
3
),
271
292
(
2007
).
12.
M.
Pachera
, “
Numerical simulations of fires in road and rail tunnels with structural and fluid dynamic analysis
”, PhD Thesis,
University of Padova
,
2017
.
13.
Brenner Base Tunnel website
;
BBT
https://www.bbt-se.com/it/
14.
J.
Mazars
,
J.
Pijaudier-Cabot
,
J. Eng. Mech-ASCE
115
(
2
),
345
365
(
1989
).
15.
D.
Gawin
.
F.
Pesavento
,
B. A.
Schrefler
,
Commun. Numer. Methods Eng.
18
(
2
),
113
119
(
2002
).
16.
W.G.
Gray
,
B.A.
Schrefler
,
F.
Pesavento
,
J. Mech. Phys. Solids
57
539
554
(
2009
).
17.
M.
Bianco
,
G.
Bilardi
,
F.
Pesavento
,
G.
Pucci
,
B.A.
Schrefler
,
Int. J. Numer. Meth. Eng.
57
(
13
),
1801
1818
(
2003
).
18.
A.
Lönnermark
,
J.
Lindström
,
Y.
Li
,
A.
Claesson
,
M.
Kumm
,
H.
Ingason
, “
Full-scale fire tests with a commuter train in a tunnel
”,
Sp technical research institute of Sweden
,
Borås, Sweden
,
2012
.
This content is only available via PDF.