A numerical model of a continuously inhomogeneous elastic medium by the finite superelement method is constructed. The superelement is developed by meshless method and based on Bernstein polynomials. A number of problems of the theory of elasticity are considered: stress-strain states are obtained for the square area under mixed boundary conditions.

1.
R.P.
Fedorenko
,
CFD Journal.
5
(
2
),
203
212
(
1996
).
2.
M.
Galanin
,
E.
Savenkov
,
Math. Modelling and Analysis
,
7
(
1
),
41
50
(
2002
).
3.
T.
Belytschko
,
Y.
Lu
,
L.
Gu
,
Int. J. Numer. Meth. Engng.
,
37
,
229
256
(
1994
).
4.
G.G.
Lorenz
,
Bernstein Polynomials
, 2nd edn. (
Chelsea Publishing Company
,
New York
,
1986
), p.
134
.
5.
D.
Garijo
,
Ó.F.
Valencia
,
F.J.
Gómez-Escalonilla
,
J.
López
,
Proceedings of IMechE, Part C
,
J. Mech. Eng. Sci.
,
228
(
3
),
391
404
(
2014
).
6.
N.P.
Abovsky
,
N.P.
Andreev
,
A.P.
Deruga
,
Variational principles of elasticity and shell theory
(in Russian), (
Nauka
,
Moscow
,
1978
), p.
288
.
7.
G.
Lubin
, ed.
Handbook of Composites
(
Van Nostrand Reinhold Company Inc.
,
New York
,
1982
), p.
786
.
8.
H.B.
Huntington
,
Solid State Physics
,
7
,
213
(
1958
).
9.
T.
Fujii
,
M.
Zako
,
Fracture mechanics of composite materials
(
Mir, Moscow
,
1982
), p.
232
.
10.
GOST 10243-75
.
Steel. Method of test and estimation of the macrostructure
(
Publishing house of standards
,
Moscow, USSR
,
1985
), p.
27
.
This content is only available via PDF.