The LZ dark matter detector, like many other rare-event searches, will suffer from backgrounds due to the radioactive decay of radon daughters. In order to achieve its science goals, the concentration of radon within the xenon should not exceed 2 µBq/kg, or 20 mBq total within its 10 tonnes. The LZ collaboration is in the midst of a program to screen all significant components in contact with the xenon. The four institutions involved in this effort have begun sharing two cross-calibration sources to ensure consistent measurement results across multiple distinct devices. We present here five preliminary screening results, some mitigation strategies that will reduce the amount of radon produced by the most problematic components, and a summary of the current estimate of radon emanation throughout the detector. This best estimate totals < 17.3 mBq, sufficiently low to meet the detector’s science goals.

1.
G.
Bellini
 et al 
(Borexino
),
JCAP
1308
, p.
049
(
2013
), arXiv:1304.7381 [physics.ins-det].
2.
J. B.
Albert
 et al 
(EXO-200 Collaboration
),
Phys. Rev. C
92
, p.
015503
Jul (
2015
).
3.
A.
Bradley
 et al,
Physics Procedia
61
,
658
665
(
2015
),
13th International Conference on Topics in As-troparticle and Underground Physics, TAUP
2013.
4.
E.
Aprile
 et al 
(XENON
),
JCAP
1604
, p.
027
(
2016
), arXiv:1512.07501 [physics.ins-det].
5.
J.
Brack
 et al 
(DRIFT
),
Journal of Instrumentation
9
, p.
P07021
(
2014
).
6.
B. J.
Mount
 et al, (
2017
), arXiv:1703.09144 [physics.ins-det].
7.
S.
Arrhenius
, Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte (
Wilhelm Engelmann
,
Leipzig
,
1889
), pp.
96
116
.
8.
A.
Piepke
and
K.
Pushkin
, “
Estimate of the EXO-200 radon production inside the TPC
,” (
2011
),
EXO Internal Memo.
9.
S.
Pauly
, “Permeability and diffusion data,”
Hoechst AG
,
Werke Kalle
.
10.
K.
Abe
 et al,
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers
,
Detectors and Associated Equipment
661
,
50
57
(
2012
).
11.
C.
Arpesella
 et al 
(BOREXINO
),
Astropart. Phys.
18
,
1
25
(
2002
), arXiv:hep-ex/0109031 [hep-ex].
12.
B.
Soule
, “
Radon emanation chamber : High sensitivity measurements for the supernemo experiment
,”
08
(
2013
).
13.
J.
Zeigler
,
The stopping ranges of ions in matter
,
2008
.
14.
J.
Porstendörfer
,
Radiation Protection Dosimetry
94
,
365
373
(
2001
).
15.
G.
Zuzel
, “
Highly Sensitive Measurements of 222Rn Diffusion and Emanation
,” in
Topical Workshop on Low Radioactivity Techniques: LRT 2004
.,
American Institute of Physics Conference Series
, Vol.
785
, edited by
B.
Cleveland
,
R.
Ford
, and
M.
Chen
(
2005
), pp.
142
149
.
16.
M.
Liu
,
H.
Lee
, and
A.
McDonald
,
Nuclear Instruments and Methods in Physics Research Section A: Ac-celerators, Spectrometers
,
Detectors and Associated Equipment
329
,
291
298
(
1993
).
17.
E.
Aprile
 et al 
(XENON100 Collaboration
),
Phys. Rev. D
83
, p.
082001Apr
(
2011
).
18.
G.
Zuzel
and
H.
Simgen
,
Applied Radiation and Isotopes
67
,
889
893
(
2009
),
5th International Conference on Radionuclide Metrology-Low-Level Radioactivity Measurement Techniques ICRM-LLRMT’08
.
This content is only available via PDF.