For the production of composite components made of long-fibre reinforced thermoplastics (LFT) the economic compression moulding process is well established. However, the low temperature of the compression mould during processing leads to a significant increase in both the material viscosity and in the compression force in particular for thin-walled components. In addition, low surface qualities result which prevent the application of such components in visible areas. To overcome these disadvantages, a variothermal compression moulding process has been developed at the Institute of Plastics Processing (IKV) at RWTH Aachen University. With the variothermal mould technology a reduction of the viscosity of the moulding compound during processing is achieved. This results in a reduction of compression force by about 60 %. Additionally, moulding compounds with higher fibre contents (up to 60 % by weight) can be processed and the surface quality of LFT compression moulding components can be significantly increased for the application in visible areas. This paper describes the functionality of the variothermal mould technology and its efficiency for the process of LFT compression moulding. Results of investigations regarding the influence of the mould temperature on the process properties and the component properties are presented and discussed.

1.
C.
Dallner
, “
Werkstoffe fuer die Zukunft des Leichtbaus
” in
Kunststoffe
102
,
2012
, pp.
60
67
2.
Ch.
Hopmann
,
A.
Böttcher
and
J.
Fragner
, “
Funktionsintegrierte Kunststoffloesungen fuer die zukuenftige Mobilitaet
” in
VDI Conference Kunststoffe im Automobilbau
,
Mannheim, Germany
,
2013
3.
N.N., “An Assessment of Mass Reduction Opportunities for a 2017 – 2020 Model Year Vehicle Program”
Market Analysis
,
Lotus Engineering Inc, Ann Arbor (MI
),
USA
,
2010
4.
M.
Schuck
, “Kunststoffe als Leichtbauwerkstoffe” in
Conference Metropolregion Nuernberg
,
Ansbach, Germany
,
2011
5.
W.
Krause
, “Langfaserverstaerkte Thermoplaste im Automobilbau”
Faserverbundwerkstoffe im Automobilbau und Transportwesen
.
Duebendorf, Germany
,
2012
6.
M.
Schemme
, “Langfaserverstaerkte Thermoplaste - Status und Perspektiven” in
Conference Thermoplastische Faserverbundkunststoffe
,
Erlangen, Germany
,
2014
, pp.
1
29
.
7.
G.
Ehrenstein
,
Faserverbund-Kunststoffe
,
Carl Hanser Verlag
,
Muenchen, Germany
,
2006
8.
S.T.
Jespersen
, “
Methodology for evaluating new high volume composite manufacturing technologies
”, Ph.D. Thesis,
Thèse École polytechnique fédérale de Lausanne
,
Switzerland
,
2008
9.
H. J.
Wolf
, “
Zum Einfluß der Schneckenplastifizierung auf die Faserstruktur diskontinuierlich langglasfasergefuellter Thermoplaste
” Ph.D. Thesis,
TU Darmstadt
,
Germany
,
1966
10.
O.
Herd
, “Langglasfaser verstaerkte Kunststoffe und ihre Einsatzgebiete im Automobil” in
Conference Kunststoff Kolloquium
,
Deggendorf, Germany
,
2006
11.
S. F.
Bush
,
F. G.
Torres
and
J. M.
Methven
, “
Rheological characterisation of discrete long glass fibre (LGF) reinforced thermoplastic
” in
Composites: Part A
,
31
, (
2000
, pp.
1421
1431
12.
P.-C.
Chang
and
S.-J.
Hwang
, “Experimental Investigation Of Infrared Rapid Surface Heating For Injection Moulding” in
Proceedings of the 64th Annual Technical Conference (ANTEC) of The Society Of Plastics Engineers (SPE)
,
Charlotte, NC, USA
,
2006
13.
M.
Schoengart
, „
Variotherme Temperierung beim Spritzgießen – Verfahren und Moeglichkeiten zur gezielten Steigerung der Formteilqualitaet
Conference Das Spritzgießwerkzeug – Kernstueck einer effizienten Produktion Institute of Plastics Processing (IKV) at RWTH Aachen University, Aachen, Germany
,
2012
14.
Ch.
Hopmann
,
C.
Beste
and
A.
Boettcher
, “
High Surface Quality, Half the Compression Force
” in
Kunststoffe International
,
2016
, pp.
29
31
This content is only available via PDF.