We show how the first two largest eigenvalues of Laplacian of a graph or smooth surface can be used to estimate the Cheeger constant of the graph. Particularly, we consider the problem of separating the graph into two large components of approximately equal volumes by making a small cut. This is the idea of Cheeger constant of a graph, which we want to relate to the spectral gap (the difference between the moduli of the first two largest eigenvalues of a Laplacian). We shall use Rayleigh variational characterization of the eigenvalues of the Laplacian to obtain the first two largest eigenvalues. The study reveals that spectral gap of a graph Γ correlates with the Cheeger constant hΓ of the graph. All our results are illustrated by some simple examples to give a clear insight of the concepts.

1.
Q. A.
Acton
(
2013
),
Issues in Applied Computing: 2013 Edition
Scholary Editions
,
Atlanta, Georgia
.
2.
A. E.
Brouwer
,
W. H.
Haemers
(
2012
),
Spectra of Graph
,
Springer
New York, NY 10013, USA
3.
F. R. K.
Chung
,
Spectral Graph Theory p.cm.-(Regional conference series in mathematics
, ISSN ; no. 92).
CBMS Conference on Recent Advances in Spectral Graph Theory held at California State University at Fresno
,
June 6–10, 1994
-T.p. verso
4.
J.
Cheeger
, A lower bound for the smallest eigenvalue of the Laplacian, in:
Problems in Analysis
,
Princeton Univ. Press
,
NJ
,
1970
.
5.
N.
Alon
,
Eigenvalues and expanders
,
Combinatorica
6
, (
1986
) pg.
83
96
.
6.
N.
Alon
&
V. D.
Milman
,
Isoperimetric inequalities for graphs and superconcentrators
,
J. Combinatorial Theory B
38
, (
1985
) pg.
73
88
.
7.
M.
Fiedler
,
Algebraic Connectivity of Graphs
,
Czechoslovak Mathematical Journal
23
(
98
), (
1973
)
298
305
8.
D. M.
Cvetkovic
,
M.
Doob
and
H.
Sachs
(
1979
),
Spectra of Graph
,
Academic Press
,
New York
.
9.
M.R.
Jerrum
and
A.
Sinclair
,
Approximating the permanent
,
SIAM J. Comput.
18
(
1989
),
1149
1178
.
10.
P.
Exner
,
M.
Jex
,
On the ground state of quantum graphs with attractive S-coupling
,
Phys. Lett. A
376
(
2012
), no.
5
,
713
717
.
11.
Panos
Papasoglu
,
Cheeger constants of surfaces and isoperimetric inequalities
,
Transactions of the American Mathematical Society
. Volume
361
, Number
10
, October
2009
, Pages
5139
5162
, S 0002-9947(09)04815-6.
12.
C.
Gordon
,
D.
Webb
and
S.
Wolpert
,
Isopectral plane domains and surfaces via Riemannian orbifolds
,
Invent. Math.
110
(
1992
), Pages
1
22
.
13.
Richard M.
Schoen
and
S.-T.
Yau
,
Lectures on Differential Geometry
, (
1994
),
International Press
,
Cambridge, Massachusetes
.
14.
T.
Sunada
,
Riemannian coverings and isospectral manifolds
,
Ann. Math.
121
(
1985
),
169
186
.
15.
J.
Hersch
,
Quatre proprietes isoperimetriques de membranes spheriques homogenes
,
C.R. Acad. Sci. Paris
270
(
1970
) p.
1645
1648
16.
P.
Young
,
S.T.
Yau
,
Eigenvalues of the Laplacian of compact Riemann surfaces and minimal sub-manifolds
,
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(
4
)
7
(
1980
), p.
55
63
.
This content is only available via PDF.