This article presents the results from thermal comfort survey carried out in classrooms over two different seasons in Maceio, Brazil. The secondary data were collected from thermal comfort field study conducted in naturally ventilated classrooms. Objective and subjective parameters were explored to evaluate thermal comfort conditions. The potential effect of air movement on subjects’ vote under neutrality was evaluated. Overall, the indoor climate of the surveyed location was classified warm and humid. Conflicting results were depicted when analyzing the effect of air movements on subjects’ vote. The mean air temperature for subjects feeling hot was found to be lower than those feeling warm. A reasonable approach to tackle these two unpredictable results was suggested. Correlation matrix between selected thermal comfort variables was developed. Globe temperature recorded the highest correlation with subjects’ response on ASHRAE seven-point scale. The correlation was significant at the 0.01 level. On the other hand, the correlation between air movement and subjects’ response on ASHRAE seven-point scale was weak but significant. Further field studies on the current topic were recommended.

1.
J.R. Rafael
Batista
&
L.T.G.
Fabio
& P.d. R,
Present climate and future projections of the thermal comfort index for the metropolitan region of São Paulo, Brazil
(
Climatic Change
,
Springer
,
2016
).
2.
P.O.
Fanger
,
N.K.
Christensen
,
Ergonomics
29
(
2
),
215
235
(
1986
).
3.
K. E.
Charles
,
Fanger’s Thermal Comfort and Draught Models. IRC Research Report RR-162
,
Ottawa, Canada
(
2003
).
4.
C.
Candido
,
R.J.
de Dear
,
R.
Lamberts
,
L.
Bittencourt
,
Building and Environment
45
,
222
229
(
2010
).
5.
Harimi
Djamila
,
Renewable and Sustainable Energy Reviews
74
,
569
580
, (
2017
)
6.
Harimi
Djamila
,
Chi-Ming
Chu
,
Sivakumar
Kumaresan
,
Building and Environment
62
,
133
142
(
2013
).
7.
M.
Kottek
,
J.
Grieser
,
C.
Beck
,
B.
Rudolf
and
F.
Rubel
,
Meteorologische Zeitschrift
15
,
259
263
(
2006
).
8.
R.
Dambul
,
P.
Jones
,
Geografia
,
OnlineTM Malaysia Journal of Society and Space
3
,
84
105
(
2007
).
9.
Harimi
Djamila
,
T. L.
Yong
,
Sustainable Cities and Society
27
,
42
48
(
2016
).
10.
Harimi
Djamila
,
T. L.
Yong
,
Advanced Science Letters
23
,
1403
1406
, (
2017
).
11.
M. C.
Peel
,
B. L.
Finlayson
,
T. A.
Mcmahon
,
Earth Syst. Sci.
11
,
1633
1644
(
2007
).
13.
W.
Srivajana
,
Thammasat Int. J. Sc. Tech
8
(
2
),
45
54
(
2003
)
14.
L.
Daniel
,
T.
Williamson
,
V.
Soebarto
and
D.
Chen
,
A model for the cooling effect of air movement 2015
, edited by
R.H.
Crawford
and
A.
Stephan
(
The Architectural Science Association and the University of Melbourne
, p.
1077
.
15.
G.
Brager
,
H.
Zhang
, and
E.
Arens
,
Building Research & Information
43
,
274
287
(
2015
).
16.
Rajapaksha
,
H.
Nagai
,
M.
Okumiya
,
Indoor Air 2002, Proceedings of the 9th International Conference on Indoor Air Quality and Climate
,
Monterey, CA
,
2002
, p.
1072
.
17.
P.O.
Fanger
,
A.K.
Melikov
,
H.
Hanzawa
,
J.
Ring
,
Energy and Buildings
12
,
121
3
(
1988
).
18.
A.
Foruzanmehr
,
Thermal Comfort in Hot Dry Climates: Traditional Dwellings in Iran
(
Routledge
,
2017
).
19.
D.
DuBois
,
EF
DuBois
,
Arch Int Med
17
,
863
71
(
1916
).
20.
C.
Morgan
,
R.
de Dear
.
Weather, Inter-Research
24
,
267
284
(
2003
).
21.
R.
DE Vecchi
,
R.
Lamberts
,
C.
Candido
,
Ambiente Construído, Porto Alegre
17
,
69
81
, (
2017
).
22.
I.
Holmer
,
D. CE.
Gavhed
,
S.
Grahn
,
H. O
Nilsson
,
Proceedings of the Fifth Int. Conf. on Environmental Ergonomics
, edited by
W.A.
Lotens
and
G.
Havenith
(
Maasnicht, the Netherlands
,
1992
), p.
67
.
23.
M.
Humphreys
,
F.
Nicol
,
S.
Roaf
,
Adaptive thermal comfort
(
Routledge
,
London and New York
,
2016
).
24.
J.
Miles
and
M.
Shevlin
,
Applying regression & correlation
(
Sage
,
Los Angeless
,
2001
).
25.
A.
Agresiti
and
B.
Finlay
,
Statistical methods for the social science
(
Prentice Hall
,
New Jersey
,
1997
).
This content is only available via PDF.