In anticipating damages to buildings caused by earthquakes, many types of building constructions have been developed and studied. One of these is eccentrically braced frames that uses the link element as part of the structural element that serves to absorb seismic energy. When tested for its ductility, strength, rigidity and energy absorption, the long link performed more poorly compared to short ones. However, advantages of using long links includes space for architectural design and the ease of meeting building requirements. The focus of this study is to provide information on using supplemental double stiffeners on both sides of the web at the ends of long links. The behavior of long links is maintained by positioning the flange failures at the end of the link. The supplemental double stiffeners can improve performance of the long link due to the extension of the inelastic zone and the slowing of failure in the flange at both ends of the link. A numerical study was carried out on several specimens of the long link consisting of a standard specimen and specimens modified by the addition of supplemental double stiffeners. Long link specimens were modified by varying the thickness and hole width on the supplemental double stiffeners. The results showed that the addition of double stiffeners can improve the performance of long links compared to the standard link according to the requirements of AISC 341-10.

1.
AISC 341-10,
Seismic provision for structural steel building
, (
AISC
,
Inc
,
2010
).
2.
ANSYS Modelling and meshing guide, Release 10.0, ANSYS Inc.
3.
A.
Daneshmand
and
B.H.
Hashemi
,
J. Constr. Steel Res
,
70
,
167
176
, (
2012
).
4.
A.
Ghobarah
and
T.
Ramadan
,
Eng. Struct.
,
12
, (
1990
),
5.
A.
Ghobarah
and
T.
Ramadan
,
Can. J. Civ. Eng.
,
18
,
140
148
, (
1991
).
6.
A.
Mohebkhah
and
B.
Chegeni
,
Thin-Walled Structures
,
74
,
255
260
, (
2014
).
7.
A.
Ramos
and
J. A.
Simoes
,
Medical Engineering and Physics
,
28
,
916
924
, (
2006
).
8.
D.
Ozhendekci
and
N.
Ozhendekci
,
J. Constr. Steel Res.
,
64
,
326
343
, (
2008
).
9.
E.
Kaufmann
,
b.
Metorvic
and
A.
Pense
, Characterization of cyclic inelastic strain behavior on properties of A572 Gr.50 and A913 Gr.50 rolled sections,
Bethlehem
,
PA
:
Advanced Technology for Large Structural System (ATLSS), Lehigh University
, (
2001
).
10.
F.
Danesh
and
B.
Shakerpoor
,
15th World Conference on Earthquake Engineering
, (
Lisbon - Portugal
,
2012
).
11.
G.
Arce
, Thesis,
Univ. of Texas at Austin
, (
USA
,
2002
).
12.
G. D.
Corte
,
M.
D’Aniello
, and
R.
Landolfo
,
J. Constr. Steel Res.
,
82
,
19
32
, (
2013
).
13.
J. K.
Hong
,
C. M.
Uang
,
T.
Okazaki
and
M. D.
Engelhardt
,
Journal of Structural Engineering
, (
2014
).
14.
M. D.
Engelhardt
and
E. P.
Popov
,
Behavior of long link in eccentrically braced frame
, Report No. UCB/EERC-89/01
Berkeley
:
Earthquake Engineering Research Centre, University of California
, (
1989
).
15.
M. D.
Engelhardt
and
E. P.
Popov
,
J. Struct. Eng.
,
118
(
11
),
3067
3088
, (
1992
).
16.
M.
Stephens
and
P.
Dusicka
,
J. Struct. Eng.
, (
2014
).
17.
P. W.
Richards
and
C. M.
Uang
,
J. Struct. Eng.
,
131
,
1546
1552
, (
2005
).
18.
P. W.
Richards
and
C. M.
Uang
,
J. Struct. Eng.
,
132
,
1183
1191
, (
2006
).
19.
P.
Dusicka
,
A. M.
Itani
and
I. G.
Buckle
,
J. Struct. Eng.
,
136
(
4
),
370
378
, (
2010
).
20.
T.
Okazaki
,
M. D.
Engelhardt
,
J. K.
Hong
,
C. M.
Uang
and
A.
Drolias
,
J. Struct. Eng.
, (
2014
).
21.
T.
Okazaki
,
G.
Arce
,
H. C.
Ryu
and
M. D.
Engelhardt
,
J. Struct. Eng.
,
131
(
10
),
1526
1535
, (
2005
).
22.
T. Okazaki
,
T
and
M. D.
,
Engelhardt
,
Proceedings of the 8th U.S. National Conference on Earthquake
Engineering
,
1526
, (
2006
).
23.
T.
Okazaki
and
M. D
Engelhardt
,
J. Constr. Steel Res.
,
63
,
751
765
, (
2007
).
24.
T.
Okazaki
,
M. D.
Engelhardt
,
Drolias
,
A.
,
Shell
,
E.
,
Hong
,
J. K.
and
Uang
,
C. M.
,
J. Constr. Steel Res.
,
65
,
1401
1412
, (
2009
).
25.
Yurisman
,
B. Budiono
,
M.
Mustopo
and
M.
Suarjana
,
ITB Journal of Engineering Science
,
42
(
2
), (
2010
).
This content is only available via PDF.