The experimental and numerical investigations of synthesis of silica (SiO2) nanoparticles from premixed gaseous silicon tetrachloride (SiCl4) and oxygen of dry air in the high-temperature nitrogen flow of plasma-chemical reactor have been carried out. The regime of counter flow jet quenching of high-temperature heterogeneous flow has been utilized. The latter provided a rapid cooling of silica particles under nonequilibrium conditions with substantial temperature gradients. Synthesized silica particles were amorphous, with surface-average size being about 28 nm. The results of numerical calculations are found to agree qualitatively with experimental data.
REFERENCES
1.
H.K.
Park
and K.Y.
Park
, KONA Powder Part. J.
32
, 85
–101
(2015
).2.
V.Y.
Rudyak
, A.V.
Minakov
, and S.L.
Krasnolutskii
, Phys. Mesomech.
19
(3
), 298
–306
(2016
).3.
A.N.
Zolotko
, N.I.
Poletaev
, and Y.I.
Vovchuk
, Combust. Explos. Shock Waves
51
(2
), 252
–268
(2015
).4.
G.D.
Ulrich
, Combust. Sci. Technol.
4
, 47
–57
(1971
).5.
S.E.
Pratsinis
, Prog. Energy Combust. Sci.
24
, 197
–219
(1998
).6.
P.
Roth
, Proc. Combust. Inst.
31
, 1773
–1788
(2007
).7.
G.D.
Ulrich
, B.A.
Milnes
, and N.S.
Subramanian
, Combust. Sci. Technol.
14
, 243
–249
(1976
).8.
S.
Tsantilis
, H.
Briesen
, and S.E.
Pratsinis
, J. Aerosol Sci.
34
, 237
–246
(2001
).9.
S.H.
Ehrman
, S.K.
Friedlander
, and M.R.
Zachariah
, J. Aerosol Sci.
29
, 687
–706
(1998
).10.
M.J.
Kirchhof
, H.
Forster
, H.-J.
Schmid
, and W.
Peukert
, J. Aerosol Sci.
45
, 26
–39
(2012
).11.
M.L.
Eggersdorfer
and S.E.
Pratsinis
, Adv. Powder Technol.
25
, 71
–90
(2014
).12.
A.
Camenzind
, H.
Schulz
, A.
Teleki
, G.
Beaucage
, T.
Narayanan
, S.E.
Pratsinis
, and Eur. J. Inorg, Chem.
911
–918
(2008
).13.
H.
Briesen
, A.
Fuhrmann
, and S.E.
Pratsinis
, Chem. Eng. Sci.
53
, 4105
–4112
(1998
).14.
H.K.
Kammler
and S.E.
Pratsinis
, Chem. Eng. Process.
39
, 219
–227
(2000
).15.
W.
Zhu
and S.E.
Pratsinis
, AIChE J.
43
, 2657
–2664
(1997
).16.
R.
Mueller
, H.K.
Kammler
, S.E.
Pratsinis
, A.
Vital
, G.
Beaucage
, and P.
Burtscher
, Powder Technol.
140
, 40
–48
(2004
).17.
A.J.
Rulison
, P.F.
Miquel
, and J.L.
Katz
, J. Mater. Res.
11
, 3083
–3089
(1996
).18.
M.R.
Zachariah
, D.
Chin
, H.G.
Semerjian
, J.L.
Katz
, Combust. Flame
78
, 287
–298
(1989
).19.
D.R.
Powers
, J. Am. Ceram. Soc.
61
, 295
–297
(1978
).20.
W.G.
French
, L.J.
Pace
, and V.A.
Foertmeyer
, J. Phys. Chem.
82
, 2191
–2193
(1978
).21.
R.Y.
Hong
, B.
Feng
, Z.Q.
Ren
, B.
Xu
, H.Z.
Li
, Y.
Zheng
, J.
Ding
, and D.G.
Wei
, Can. J. Chem. Eng.
87
, 143
–156
(2009
).22.
T.
Giesenberg
, S.
Hein
, M.
Binnewies
, and G.
Kickelbick
, Angew. Chem. Int. Ed.
43
, 5697
–5700
(2004
).23.
Ya.B.
Zel’dovich
and Yu.P.
Raizer
. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
, (Academic Press
, New York
, 1968
) pp. 437
–441
.24.
E.V.
Kartaev
, V.P.
Lukashov
, S.P.
Vashenko
, S.M.
Aulchenko
, O.B.
Kovalev
, and D.V.
Sergachev
, Int. J. Chem. Reactor Eng.
12
(1
), 1
–20
(2014
).25.
V.I.
Kuzmin
, A.A.
Mikhalchenko
, O.B.
Kovalev
, E.V.
Kartaev
, and N.A.
Rudenskaya
, J. Therm. Spray Technol.
21
, 159
–168
(2012
).26.
E.V.
Kartaev
, V.A.
Emelkin
, M.G.
Ktalkherman
, V.I.
Kuzmin
, S.M.
Aulchenko
, and S.P.
Vashenko
, Chem. Eng. Sci.
119
, 1
–9
(2014
).27.
E.V.
Kartaev
, V.A.
Emelkin
, M.G.
Ktalkherman
, S.M.
Aulchenko
, S.P.
Vashenko
, and V.I.
Kuzmin
, Exp. Therm. Fluid Sci.
68
, 310
–321
(2015
).28.
S.M.
Aulchenko
, J. Eng. Phys. Thermophys.
85
, 37
–41
(2012
).
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)