This work evaluates the effectiveness of the Two-Fluid Model (TFM) to simulate gas flows with dense particles by using a simplified Fluidized Bed as a test case. The overarching objective is to check the prediction accuracy of the TFM Model. This document includes the simulations performed using two drag models, namely Gidaspow and Syamlal-O’Brien, using Ansys Fluent 18.1. The bubble evolution as well as the time-averaged volume-fraction distributions have been compared with prior simulations conducted using MFIX, Barracuda and also with experimental data found in literature. Though the low computational requirements and capability to produce reasonable time-averaged results makes TFM a better choice for industrial applications, the low prediction accuracy for the instantaneous quantities often renders it unsuitable for more scientifically demanding studies. Hence, this work aims at a critical evaluation of the TFM model for the specified test problem.

1.
Y.
Tsuji
,
T.
Kawaguchi
, and
T.
Tanaka
,
Powder Technology
77
,
79
87
(
1993
).
2.
R.
Jansen
,
N.
Gimelshein
,
S.
Gimelshein
, and
I.
Wysong
,
The Journal of Chemical Physics
134
, p.
104105
(
2011
), .
3.
S.
Yonemura
,
T.
Tanaka
, and
Y.
Tsuji
,
ASME FED
166
,
303
309
(
1993
).
4.
T. O. S.
Pannala
,
M.
Syamlal
,
Computational Gas solids Flows and Reacting Systems: Theory, Methods and Practice
(
IGI Global
,
USA
,
2011
), pp.
01
65
.
5.
H.
Enwald
,
E.
Peirano
, and
A.-E.
Almstedt
,
International Journal of Multiphase Flow
22
,
21
66
(
1996
).
6.
L.-S.
Fan
,
AIChE Journal
42
,
1197
1198
(
1996
).
7.
K.
Wu
,
L.
de Martn
,
L.
Mazzei
, and
M.-O.
Coppens
,
Powder Technology
295
,
35
42
(
2016
).
8.
L. J.
Briggs
,
American Journal of Physics
27
,
589
596
(
1959
), .
9.
P. G.
Saffman
,
Journal of Fluid Mechanics
22
, p.
385400
(
1965
).
10.
J.
Kuipers
, “
A two-fluid micro balance model of fluidized beds
,” Ph.D. thesis,
University of Twente
1990
.
11.
R.
Garg
and
J.F.
Dietiker
,
Documentation of open-source mfix-pic software for gas-solids flows
, Https://mfix.netl.doe.gov/documentation/mfix-pic-doc.pdf.
12.
A.
Boemer
,
H.
Qi
, and
U.
Renz
,
International Journal of Multiphase Flow
23
,
927
944
(
1997
).
13.
D.
Patil
,
M. van Sint
Annaland
, and
J.
Kuipers
,
Chemical Engineering Science
60
,
57
72
(
2005
).
14.
D.
Schaeffer
,
J. Differ. Equ.
66
,
19
50
(
1987
).
15.
T. O. M.
Syamlal
,
W.
Rogers
,
Mfix Documentation: Theory Guide, National Energy Technology Laboratory, Department of Energy
,
Technical Note DOE/METC-95/1013 and NTIS/DE95000031
(8 July
1993
).
16.
D.
Gidaspow
,
R.
Bezburuah
, and
J.
Ding
, “
Hydrodynamics of circulating fluidized beds: Kinetic theory approach
,” (
1991
).
17.
M.
Syamlal
and
T. J.
O’Brien
,
AIChE journal
49
,
2793
2801
(
2003
).
18.
A. V.
Fedorov
,
I. A.
Fedorchenko
,
M. S.
Vasilishin
,
A. G.
Karpov
, and
O. S.
Ivanov
,
Journal of Applied Mechanics and Technical Physics
53
,
397
407
(
2012
).
19.
Y.
Zhang
,
J.
Li
,
F.
Cheng
, and
Y.
Guo
,
Combustion, Explosion, and Shock Waves
51
,
670
677
(
2015
).
20.
N. A.
Dvornikov
,
Combustion, Explosion, and Shock Waves
51
,
631
640
(
2015
).
This content is only available via PDF.