We carried out a systematic comparison on the steady-state and transient electron transport properties in a monolayer silicon (silicene) and bulk silicon using the semi-classical ensemble Monte Carlo method. We found that at steady state the electron drift velocity in bulk Si is higher than silicene which can be attributed to the larger phonon scattering rate of silicene. However, the transient electron drift velocity of silicene can increase up to 2.6 × 107 cm/s at applied electric field of 40 kV/cm, which is 30 % higher than the peak overshoot value of bulk Si. This advantage is not preserved at steady state condition. Based on the drift velocity overshoot characteristics, we conclude that silicene offers a better advantage than bulk Si when the device dimension is less than 20 nm.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S.V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S.V.
Dubonos
,
I.V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
L. C. Lew Yan
Voon
,
J.
Zhu
,
U.
Schwingenschlögl
,
Appl. Phys. Rev.
3
,
040802
(
2016
).
3.
G. G.
Guzmán-Verri
and
L. C. Lew Yan
Voon
,
Phys. Rev. B.
76
,
075131
(
2007
).
4.
G. G.
Guzmán-Verri
and
L. C. Lew Yan
Voon
,
MRS Bulletin
39
,
366
(
2014
).
5.
A.
Molle
,
C.
Grazianetti
,
D.
Chiappe
,
E.
Cinquanta
,
E.
Cianci
,
G.
Tallarida
,
M.
Fanciulli
,
Adv. Funct. Mater.
23
,
4340
(
2013
).
6.
L.
Tao
,
E.
Cinquanta
,
D.
Chiappe
,
C.
Grazianetti
,
M.
Fanciulli
,
M.
Dubey
,
A.
Molle
and
D.
Akinwande
,
Nat. Nanotechnol.
10
,
227
(
2015
).
7.
X.
Li
,
J. T.
Mullen
,
Z.
Jin
,
K. M.
Borysenko
,
M. B.
Nardelli
and
K. W.
Kim
,
Phys. Rev. B.
87
,
115418
(
2013
).
8.
B.
Hu
,
J. Phys.: Condens. Matter.
27
,
245301
(
2015
).
9.
K. H.
Yeoh
,
D. S.
Ong
,
C. H. Raymond
Ooi
,
T. K.
Yong
and
S. K.
Lim
,
Semicond. Sci. Technol.
31
,
065012
(
2016
).
10.
H.
Hirai
,
H.
Tsuchiya
,
Y.
Kamakura
,
N.
Mori
and
M.
Ogawa
,
J. Appl. Phys.
116
,
214505
(
2014
).
11.
P.
Borowik
,
J.
Thobel
and
L.
Adamowicz
,
Phys. Status Solidi A.
DOI .
12.
P.
Borowik
,
J.
Thobel
and
L.
Adamowicz
,
Semicond. Sci. Technol.
31
,
115004
(
2016
).
13.
K.
Tomizawa
,
Numerical simulation of submicron semiconductor devices
(
Artech House
,
Boston
,
1993
), pp.
79
114
.
14.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
15.
L. C. Lew Yan
Voon
,
A.
Lopez-Bezanilla
,
J.
Wang
,
Y.
Zhang
and
M.
Willatzen
,
New J. Phys.
17
,
025004
(
2015
).
16.
D. S.
Ong
,
G. J.
Rees
and
J. P. R.
David
,
J. Appl. Phys.
93
,
4232
(
2003
).
17.
B. E.
Foutz
,
S. K.
O’Leary
,
M. S.
Shur
and
L. F.
Eastman
,
J. Appl. Phys.
85
,
7727
(
1999
).
18.
A.
Dyson
,
D. R.
Naylor
and
B. K.
Ridley
,
IEEE Trans. Electron Dev.
62
,
3613
(
2015
).
This content is only available via PDF.