A novel 4-D dynamical memristive system is presented in this work. The specificity of the model is that it develops a line of equilibrium points and it has hyperjerk dynamics in a particular range of the parameters space. The behavior of the suggested system is investigated through numerical simulations, by using phase portraits, Lyapunov exponents, bifurcation diagrams. Also, its circuital implementation confirms the memristive system’s expected dynamics.

1.
L.O.
Chua
, “
Memristor-the missing circuit element
,”
IEEE Trans. Circuit Theory
, vol.
CT-18
, pp.
507
519
,
1971
.
2.
L.O.
Chua
and
S.M.
Kang
, “
Memristive devices and systems
,”
Proceeding of the IEEE
, vol.
375
(
23
), pp.
209
223
,
1976
.
3.
D.B.
Strukov
,
G.S.
Snider
,
G.R.
Stewart
, and
R.S.
Williams
, “
The missing memristor found
,”
Nature
, no
453
, pp.
80
83
, (
2008
).
4.
M.D.
Ventra
,
Y.V.
Pershin
, and
L.O.
Chua
, “
Circuit elements with memory: memristors, memcapacitors, and meminductors
,”
Proceedings of the IEEE
, no.
97
(
10
), pp.
1717
1724
,
2009
.
5.
L.O.
Chua
, “
Resistance switching memoties are memristors
,”
Applied Physics A
, vol
102
(
4
). pp.
765
783
,
2011
.
6.
M.
Itoh
and
L.O.
Chua
, “
Memristor oscillators
,”
Int J Bifurc Chaos
, vol.
18
, pp.
3183
3206
,
2008
.
7.
Y.B.
Zhao
,
C.K.
Tse
,
J.C.
Feng
, and
Y.C.
Guo
, “
Application of memristor-based controller for loop filter design in charge-pump phase-locked loop
,”
Circuits Syst Signal Process
, vol.
32
, pp.
1013
1023
,
2013
.
8.
A.L.
Wu
,
J.N.
Zhang
, and
Z.G.
Zeng
, “
Dynamical behaviors of a class of memristor-based Hopfield networks
,”
Physics Letters A
, vol.
375
, pp.
1661
1665
,
2011
.
9.
C.K.
Volos
,
I.M.
Kyprianidis
, and
I.N.
Stouboulos
, “
The memristor as an electric synapse synchronization phenomena
,”
In Proc. Int. Conf. DSP2011 (Confu, Greece)
, pp.
1
6
,
2011
.
10.
J.J.
Yang
,
D.B.
Strukov
, and
D.R.
Stewart
, “
Memristive devices for computing
,”
Nature Nanotechnology
, vol.
8
, pp.
13
24
,
2013
.
11.
T.
Driscoll
,
J.
Quinn
,
S.
Klein
,
H.T.
Kim
,
B.J.
Kim
,
Y. V.
Pershin
,
M.
Di Ventra
, and
D. N.
Basov
, “
Memristive adaptive filters
,”
Applied Physics Letters
, vol.
97
, pp. 093502-
1
3
,
2010
.
12.
L.
Wang
,
C.
Zhang
,
L.
Chen
,
J.
Lai
, and
J.
Tong
, “
A novel memristor-based rSRAM structure for multiple-bit upsets immunity
,”
IEICE Electronics Express
, vol.
9
, pp.
861
867
,
2012
.
13.
Y.
Shang
,
W.
Fei
, and
H.
Yu
, “
Analysis and modeling of internal state variables for dynamic effects of nonvolatile memory devices
,”
IEEE Transactions on Circuits and Systems I: Regular Papers
, vol.
59
, pp.
1906
1918
,
2012
.
14.
S.
Shin
,
K.
Kim
, and
S.M.
Kang
, “
Memristor applications for programmable analog ICs
,”
IEEE Transactions on Nanotechnology
, vol.
10
, pp.
266
274
,
2011
.
15.
H.P.W.
Gottlieb
, “
Question 38. What is the simplest jerk function that gives chaos?
,”
Am. J. Phys.
, vol.
64
, p.
525
,
1996
.
16.
J.C.
Sprott
, “Chaos and time-series analysis,”
Oxford
:
Oxford University Press
,
2003
.
17.
J.C.
Sprott
,
S.J.
Linz
, “
Algebraically simple chaotic flows
,”
Int J Chaos Theory Appl
, vol.
5
, pp.
322
,
2000
.
18.
S.J.
Linz
, “
Nonlinear dynamical models and jerky motion
,”
Am J Phys
, vol.
65
, pp.
523
526
,
1997
.
19.
R.
Eichhorn
,
S.J.
Linz
,
P.
Hnggi
, “
Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows
,”
Phys Rev E
, vol.
58
, pp.
7154
7164
,
1998
.
20.
S.H.
Schot
, “
Jerk: the time rate of change of acceleration
,”
Am J Phys
, vol.
65
, pp.
1090
1094
,
1978
.
21.
K.E.
Chlouverakis
,
J.C.
Sprott
, “
Chaotic hyperjerk systems
”,
Chaos, Solutions and Fractals
, no
8
, pp.
739
746
,
2006
.
22.
S.
Jafari
and
J.C.
Sprott
, “
Simple chaotic flows with a line equilibrium
,”
Chaos, Solitons and Fractals
, vol.
57
, pp.
79
84
,
2013
.
23.
V.T.
Pham
,
S.
Vaidyanathan
,
C.
Volos
,
S.
Jafari
, and
S. T.
Kingni
, “
A non-equilibrium hyperchaotic system with a cubic nonlinear term
,”
Optik-International Journal for Light and Electron Optics
, vol.
127
(
6
), pp.
3259
3265
,
2016
.
24.
V.T.
Pham
,
S.
Vaidyanathan
,
C.
Volos
, and
S.
Jafari
, “
Hidden attractors in a chaotic system with an exponential nonlinear term
,”
The European Physical Journal Special Topics
, vol.
224
(
8
), pp.
1507
1517
,
2015
.
25.
G.A.
Leonov
, and
N.V.
Kuznetsov
, “
Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits
,”
Int. J. Bifurcat. Chaos
, vol.
23
, pp.
1330002
,
2013
.
26.
A.
Wolf
,
J.B.
Swift
,
H.L.
Swinney
, and
J.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
, vol.
16
(
3
), pp.
285
317
,
1985
.
This content is only available via PDF.