The subject of this paper belongs to the theory of approximate metrics [23]. An approximate metric on X is a real application defined on X × X that satisfies only a part of the metric axioms. In a recent paper [23], we introduced a new type of approximate metric, named C-metric, that is an application which satisfies only two metric axioms: symmetry and triangular inequality. The remarkable fact in a C-metric space is that a topological structure induced by the C-metric can be defined. The innovative idea of this paper is that we obtain some convergence properties of a C-metric space in the absence of a metric. In this paper we investigate C-metric spaces. The paper is divided into four sections. Section 1 is for Introduction. In Section 2 we recall some concepts and preliminary results. In Section 3 we present some properties of C-metric spaces, such as convergence properties, a canonical decomposition and a C-fixed point theorem. Finally, in Section 4 some conclusions are highlighted.

1.
G.
Apreutesei
,
Hausdorff topology and some operations with subsets
,
An. Şt. Univ. ”Al. I. Cuza” Iaşi
44
,
445
454
(
1998
).
2.
G.
Apreutesei
,
Cauchy nets and convergent nets on semilinear topological spaces
,
Topology and its Applications
159
,
2922
2931
(
2012
).
3.
G.
Apreutesei
and
N.
Apreutesei
,
On the continuity of special set-valued functions
,
An. Şt. Univ. ”Dunărea de Jos” Gala¸ti
23
,
65
68
(
2005
).
4.
G.
Apreutesei
,
The hyperspacial topologies and and almost linear spaces
,
An. Şt. Univ. ”Al. I. Cuza” Iaşi
48
,
3
18
(
2002
).
5.
G.
Apreutesei
,
N. E.
Mastorakis
,
A.
Croitoru
and
A.
Gavriluţ
,
On the translation of an almost linear topology
,
WSEAS Transactions on Mathematics
8
,
479
488
(
2009
).
6.
S. M.
Aseev
,
Quasilinear operators and their applications in the theory of multivalued mappings
(in Russian),
Tr. MIAN SSSR, Nauka Moskva
167
,
25
52
(
1985
);
S. M.
Aseev
,
Proc. Steklov Inst. Math.
2
,
23
52
(
1986
).
7.
D.
Candeloro
,
A.
Croitoru
,
A.
Gavrilu¸t
and
A. R.
Sambucini
,
Atomicity related to non-additive integrability
,
Rend. Circ. Mat. Palermo, II. Ser
65
(
3
),
435
449
(
2016
). DOI:
8.
A.
Croitoru
and
D. M.
Borş
,
Remarks on weak linear spaces
,
Bulletin of the Polytechnic Institute of Iaşi, Tomul LXI (LXV), Fasc.
2
,
67
74
(
2015
).
9.
G.
Godini
,
A framework for best simultaneous approximation: normed almost linear spaces
,
Journal of Approximation Theory
43
,
338
358
(
1985
).
10.
Y.
Liu
,
Z.
Li
,
H.
Xiong
,
X.
Gao
and
J.
Wu
,
Understanding of Internal Clustering Validation Measures
, in
Proceedings of 2010 IEEE International Conference on Data Mining
, pp.
911
916
, DOI .
11.
N. E.
Mastorakis
,
Modeling dynamical systems via the Takagi-Sugeno fuzzy model
,
WSEAS Transactions on Systems
3
, Issue
2
,
668
675
(
2004
).
12.
A.
Croitoru
and
N.
Mastorakis
,
Estimations, convergences and comparisons on fuzzy integrals of Sugeno, Choquet and Gould type
, in
Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
,
July 6-11, 2014
,
Beijing, China
, pp.
1205
1212
.
13.
A.
Precupanu
,
A.
Gavriluţ
and
A.
Croitoru
, “
A fuzzy Gould type integral
”,
Fuzzy Sets and Systems
161
,
661
680
(
2010
).
14.
T.
Precupanu
,
Scalar minimax properties in vectorial optimization
,
International Series of Numerical Mathematics, Birkhauser Verlag Basel
107
,
299
306
(
1992
).
15.
C.
Stamate
and
A.
Croitoru
,
Convergence results for sequences of non-linear integrals
,
Recent Advances In Computer Engineering Series
15
,
76
81
(
2013
).
16.
A.
Edalat
and
R.
Heckmann
,
A computational model for metric spaces
,
Theoret. Comput. Sci.
193
,
53
73
(
1998
).
17.
S.
Hart
,
An axiomatization of the consistent non-transferable utility value
,
Int. J. Game Theory
33
,
355
366
(
2005
).
18.
A. K.
Laha
and
M.
Saha
,
Fixed point for some classes of set valued mappings on a metric space endowed with a graph
,
ROMAI Journal
11
, No.
1
,
115
129
(
2015
).
19.
F.
Lawvere
,
Metric spaces, generalized logic and closed categories
,
Rend. del Sem. Mat. e Fis. di Milano
43
,
135
166
(
1973
).
20.
E.
Pap
and
I.
Stajner
,
Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, optimization, system theory
,
Fuzzy Sets and Systems
102
,
393
415
(
1999
).
21.
M.
Turinici
,
Functional contractions in local Branciani metric spaces
,
ROMAI Journal
8
(
2
),
189
199
(
2012
).
22.
S.
Vickers
,
Localic completion of quasimetrics spaces
,
Technical Report Doc 97/2
,
Department of Computing, Imperial College
,
London
,
1998
.
23.
A.
Croitoru
and
G.
Apreutesei
,
C-Metric spaces
, submitted for publication.
24.
W. A. J.
Luxemburg
,
On the convergences of successive approximations in the theory of ordinary differential equations
,
Indag. Math.
20
,
540
546
(
1958
).
25.
A.
Branciari
,
A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces
,
Publ. Math. Debrecen
571-2
,
31
37
(
2000
).
26.
G.
Apreutesei
and
A.
Croitoru
,
A-Metric spaces
, submitted for publication.
27.
A.
Croitoru
,
Set-norm continuity of set multifunctions
,
ROMAI Journal
6
,
47
56
(
2010
).
28.
C.F.K.
Jung
,
On generalized complete metric spaces
,
Bull. A.M.S.
75
,
113116
(
1969
).
This content is only available via PDF.