Proposed a new method of constructing nonparametric dynamic models of the oculomotor system system (OMS) in the form of human multidimensional transition functions on the basis of experimental data “input-output”. As the test signals used bright points on the long duration of the computer screen. OMS response is measured using information technology Eye-tracking and recorded on video. As a result data processing of the experiment we receive function based “pupil coordinate – time”. Using the method of least squares (Ordinary Least Squares, OLS) defined transition functions of the first, second and third order - integral transformations of Volterra kernels, representing a model of OMS. Completed experimental studies using computer simulations confirm the adequacy of the constructed approximation model as a real system.

1.
J.
Kepler
, and
U.
Linz
,
Biomechanical Modelling of the Human Eye. Netz Werk für Forschung
,
Lehre und Praxis, Linz
,
231
(
2004
).
2.
E. D.
Guestrin
and
M.
Eizenman
,
General Theory of Remote Gaze Estimation Using the Pupil Center and Corneal Reflections
,
IEEE Trans. Biomed. Eng.
,
53
(
6
),
1124
1133
. DOI: (
2006
).
3.
O. V.
,
Komogortsev
and
A.
Karpov
,
Automated Classification and Scoring of Smooth Pursuit Eye Movements in Presence of Fixations and Saccades
.
Journal of Behavioral Research Methods
,
45
(
1
),
1
13
(
2013
).
4.
D.
Jansson
and
A.
Medvedev
,
Volterra Modeling of the Smooth Pursuit System with Application to Motor Symptoms Characterization in Parkinson’s Disease
.
European Control Conference (ECC)
,
1856
1861
. DOI: (
2014
).
5.
D.
Jansson
,
Stochastic Anomaly Detection in Eye-Tracking Data for Quantification of Motor Symptoms in Parkinson’s Disease
.
Advances in Experimental Medicine and Biology
,.
823
,
63
82
. DOI: (
2015
).
6.
D.
Jansson
and
A.
Medvedev
,
System identification of Wiener systems via Volterra-Laguerre models: Application to human smooth pursuit analysis
.
European Control Conference (ECC)
,
2700
2705
. DOI: (
2015
).
7.
P. Z.
Marmarelis
and
V. Z.
Marmarelis
,
Analysis of Physiological Systems
,
The White Noise Approach, Plenum Press
,
New York
,
487
(
1978
).
8.
F. J.
Doyle
,
R. K.
Pearson
and
B. A
Ogunnaike
, Identification and Control using Volterra Models. Published
Springer Technology & Industrial Arts
,
314
. (
2001
).
9.
A.
Fomin
,
M.
Masri
,
V.
Pavlenko
,
A.
Fedorova
,
Method and information technology for constructing a nonparametric dynamic model of the oculomotor system
.
EasternEuropean Journal of Enterprise Technologies
,
2/9
(
74
),
64
69
. DOI: (
2015
)
10.
V. D.
Pavlenko
,
O. O.
Fomin
,
A. N.
Fedorova
, and
M. M.
Dombrovskyi
,
Identification of Human Eye-Motor System Base on Volterra Model. Herald of the National Technical University «KhPI»
.
Subject issue: Information Science and Modelling, Kharkov, NTU «KhPI»
,
21
(
1193
),
74
85
(
2016
).
11.
D.
Graupe
,
Identification of Systems
, 2nd ed.,
R. E. Krieger Publ. Co.
,
New York
(
1976
).
This content is only available via PDF.