In an early paper, we prove that a Smarandache’s definition of neutrosophic paraconsistent topology is neither a generalization of Çoker’s intuitionistic fuzzy topology nor a Smarandache’s general neutrosophic topology. Recently, Salama and Alblowi have given a new definition of neutrosophic topology, that generalizes Çoker’s intuitionistic fuzzy topology. Here, we study this new definition and its relation with Smarandache’s paraconsistent neutrosophic sets

1.
K.T.
Atanassov
,
Fuzzy Sets Systems
20
,
87
96
(
1986
)
2.
A.
Avron
,
Fuzzy Sets and Systems
292
,
75
84
(
2016
).
3.
J.Y.
Beziau
,
M.
Chakraborty
, and
D.
Dutta
, (eds):
New directions in paraconsistent logic
.
Proceedings of the 5th World Congress on Paraconsistency (WCP)
(
Springer
,
New Delhi
,
2015
).
4.
D.
Çoker
,
Fuzzy Sets and Systems
.
88
,
81
89
(
1997
).
5.
N.C.A.
Da Costa
,
Soc. Paranense Mat. Anuário
(
2
)
1
,
6
8
.(
1958
)
6.
F.G.
Lupiáñez
.
Kybernetes
39
,
598
601
(
2010
).
7.
L.
Peña
, “Dialectical arguments, matters of degree, and paraconsistent Logic”, in
Argumentation: perspectives and approaches
edited by
F.H.
van Eemeren
and other (
Foris Publ.
,
Dordrecht
,
1987
) pp.
426
433
.
8.
G.
Priest
,
R.
Routley
, and
J.
Norman
, J. (eds.).
Paraconsistent Logic: Essays on the inconsistent
. (
Philosophia Verlag
,
Munich
,
1989
).
9.
A.A.
Salama
, and
S.A.
Alblowi
,
IOSR Journal of Math.
3
,
31
35
(
2012
)
10.
F.
Smarandache
,
Multiple-Valued Logic.
8
,
385
438
(
2002
).
11.
F.
Smarandache
,
Intern. J. Pure Appl. Math.
24
,
287
297
(
2005
).
This content is only available via PDF.